Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[invars] - compute the scalar invariants of the Riemann tensor of a space-time, based on the Newman-Penrose curvature components
Calling Sequence
invars( 'flag', Curve, conj_pairs)
Parameters
flag
-
one of the following ten values: 'r1', 'r2', 'r3', 'w1', 'w2', 'm1', 'm2', 'm3', 'm4', or 'm5'
Curve
curve component table holding the Newman-Penrose curvature components
conj_pairs
optional parameter of a list of pairs (pair: list of two elements) of names that holds the variable names to be treated as complex conjugates in the calculations.
Description
This function calculates any of the ten invariants listed above of the Riemann tensor, as designated by their corresponding flags. For detailed definitions and descriptions of these invariants, refer to the paper listed in the References section of this page.
Simplification :
tensor[invars] has two simplifiers, `tensor/invars/simp` and `tensor/invars/Msimp`.
`tensor/invars/simp` is applied once after the invariant has been formally constructed.
Due to lengths of the actual formulas for the invariants, when calculating r3, m2, m3, m4, and m5, an extra simplifier, `tensor/invars/Msimp`, is employed. `tensor/invars/Msimp` is used to simplify the sum of every 15 terms in the formulas for the five invariants mentioned above. And then `tensor/invars/simp` is applied on top of `tensor/invars/Msimp` to put the 15-term segments together.
Note: that if the user finds it unnecessary, one of these simplifiers can actually be defined to perform no action.
This function is part of the tensor package, and can be used in the form invars(..) only after performing the command with(tensor), or with(tensor, invars). The function can always be accessed in the long form tensor[invars].
Examples
Define the coordinate variables and the covariant natural basis metric :
Now give a tetrad that transforms the above metric into the one in Debever's formalism :
Obtain the curvature components.
Specify the simplification wanted :
`tensor/invars/simp`:=proc(x) x end proc:
Now you are ready to compute any of the ten invariants. For example,
Repeat with a different simplification :
`tensor/invars/simp`:=proc(x) simplify(factor(x)) end proc:
Verify the two results are identical :
Specify the "inner" simplification, namely `tensor/invars/Msimp`:
`tensor/invars/Msimp`:=proc(x) x end proc:
Repeat with a different "outer" simplifier :
Demonstrate the use of the conj_pairs parameter :
See Also
Physics[Riemann], tensor, tensor[conj], tensor[frame], tensor[npcurve], tensor[npspin], tensor[simp]
References
Carminati, J., and McLenaghan, R.G. "Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space." Journal of Mathematical Physics, Vol. 32 No. 11. (Nov. 1991).
Download Help Document