Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numtheory[mlog] - discrete logarithm
numtheory[index] - index
Calling Sequence
mlog(x, a, n)
mlog(x, a, n, 'c')
mlog(x, a, n, m)
mlog(x, a, n, 'c', m)
index(x, a, n)
index(x, a, n, 'c')
index(x, a, n, m)
index(x, a, n, 'c', m)
Parameters
x, a, n
-
integers
c
(optional) name of variable
m
(optional) equation of the form method=value
Description
The function mlog computes the discrete logarithm (also called the index) of x to the base a (mod n). It finds an integer y such that if possible, otherwise it returns FAIL.
When the optional argument c is provided, it is to be the fourth argument. If c is present in the calling sequence, the characteristic of the domain of the answer will be assigned to it. In this case all of the solutions to the logarithm are mlog(x, a, n) + k * c for any non-negative integer k.
When the optional argument m is provided, it must be the final argument in the calling sequence. This argument indicates the solution method that the user wishes to be employed. There are three possible choices for this parameter: method=shanks, which forces Shanks' Baby-Step Giant-Step algorithm to be employed in solving mlog(x, a, n); method=indcalc, which forces mlog(x, a, n) to employ the use of the Index Calculus method; or method=optimal, which automatically chooses the method based on the size of the problem. If no method is specified by the user, the default is method=optimal.
If x and n are coprime and a is a primitive root of n, then there is a unique solution of logarithm of x to the base a modulo phi(n).
Examples
mlog: "using Shanks method to compute log[a](x) mod p" mlog: "where n=10007, a=25, and x=1441."
mlog: "using the indexed calculus method to compute log[a](x) mod n" mlog: "where n=10007, a=5, and x=1441." mlog: "found new equation 1 out of 4" mlog: "found new equation 2 out of 4" mlog: "found new equation 3 out of 4" mlog: "found new equation 4 out of 4"
See Also
numtheory[primroot]
Download Help Document