Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numtheory[kronecker] - Inhomogeneous Diophantine approximation
Calling Sequence
kronecker(ineqs, xvars, yvars)
kronecker(form, alpha, err)
Parameters
ineqs
-
inequality or a set of inequalities with abs and/or valuep (p-adic valuation)
xvars
variable or set of variables
yvars
form
list of lists of real numbers or list of lists of p-adic numbers and primes
alpha
real number or list of real numbers or list of p-adic numbers
err
real number or a list of real numbers or list of positive integers
Description
This function finds a solution over the integers to a set of inequalities of the form
or
The inequalities can be described either explicitly, corresponding to the first calling sequence shown above (see the first two examples below) or implicitly, corresponding to the second calling sequence (see the last two examples below).
If the first calling sequence is used (i.e., the inequalities are given explicitly), then the result is returned in the form
If the second calling sequence is used, the result is returned as a pair of lists, the first corresponding to the x values and the second corresponding to the y values.
In the second calling sequence, if the alpha's are all the same, the list may be replaced by . The err's may be similarly replaced in the real case.
The command with(numtheory,kronecker) allows the use of the abbreviated form of this command.
Examples
See Also
isolve, numtheory[minkowski]
Download Help Document