Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numapprox[pade] - compute a Pade approximation
Calling Sequence
pade(f, x=a, [m, n])
pade(f, x, [m, n])
Parameters
f
-
expression representing the function to be approximated
x
the variable appearing in f
a
the point about which to expand in a series
m, n
desired degree of numerator and denominator, respectively
Description
The function pade computes a Pade approximation of degree for the function f with respect to the variable x.
Specifically, f is expanded in a Taylor (or Laurent) series about the point (if a is not specified then the expansion is about the point ), to order , and then the Pade rational approximation is computed.
The Pade approximation is defined to be the rational function with and such that the Taylor (or Laurent) series expansion of has maximal initial agreement with the series expansion of f. In normal cases, the series expansion agrees through the term of degree .
If or if the third argument is simply an integer m then the Taylor (or Laurent) polynomial of degree m is computed.
Various levels of user information will be displayed during the computation if infolevel[pade] is assigned values between 1 and 3.
The command with(numapprox,pade) allows the use of the abbreviated form of this command.
Examples
See Also
convert[ratpoly], numapprox/hermite_pade, numapprox[chebpade], numapprox[laurent], taylor
Download Help Document