Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[norm] - norm of a matrix or vector
Calling Sequence
norm(A)
norm(A, normname)
Parameters
A
-
matrix or vector
normname
(optional) matrix/vector norm
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function norm(A, normname) computes the specified matrix or vector norm for the matrix or vector A.
For matrices, normname should be one of: 1, 2, 'infinity', 'frobenius'.
For vectors, normname should be one of: any real constants >=1, 'infinity', 'frobenius'.
The default norm used throughout the linalg package is the infinity norm. Thus norm(A) computes the infinity norm of A and is equivalent to norm(A, infinity).
For vectors, the infinity norm is the maximum magnitude of all elements. The infinity norm of a matrix is the maximum row sum, where the row sum is the sum of the magnitudes of the elements in a given row.
The frobenius norm of a matrix or vector is defined to be the square root of the sum of the squares of the magnitudes of each element.
The '1'-norm of a matrix is the maximum column sum, where the column sum is the sum of the magnitudes of the elements in a given column. The '2'-norm of a matrix is the square root of the maximum eigenvalue of the matrix .
For a positive integer k, the k-norm of a vector is the kth root of the sum of the magnitudes of each element raised to the kth power.
The command with(linalg,norm) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[cond], LinearAlgebra, LinearAlgebra[ConditionNumber], LinearAlgebra[Norm], VectorCalculus[Norm]
Download Help Document