Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[ihermite] - integer-only Hermite Normal Form
Calling Sequence
ihermite(A)
ihermite(A, U)
Parameters
A
-
rectangular matrix of integers
U
name
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function ihermite computes the Hermite Normal Form (reduced row echelon form) of a rectangular matrix of integers.
The Hermite normal form of A is an upper triangular matrix H with rank(A) = the number of nonzero rows of H. If A is an n by n matrix of full rank then .
This is not an efficient method for computing the rank or determinant except that this may yield a partial factorization of without doing any explicit factorizations.
The Hermite normal form is obtained by doing elementary row operations. This includes interchanging rows, multiplying through a row by -1, and adding an integral multiple of one row to another.
One can use transposes to obtain column form of the Hermite Normal Form.
In the case of two arguments, the second argument U will be assigned the transformation matrix on output, such that the following holds: ihermite(A) = U A.
The command with(linalg,ihermite) allows the use of the abbreviated form of this command.
Examples
To obtain column form of Hermite Normal Form
See Also
linalg(deprecated)[det], linalg(deprecated)[hermite], linalg(deprecated)[ismith], linalg(deprecated)[rank], LinearAlgebra, LinearAlgebra[HermiteForm]
Download Help Document