Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
liesymm[makeforms] - construct a set of differential forms from a PDE
Calling Sequence
makeforms(eqns, fncs, rootname)
makeforms(eqns, fncs, [Extd])
Parameters
eqns
-
PDE, or a list or set of PDEs
fcns
list of functions, for example, u(t,x)
rootname
name used to construct the names for the extended coordinates
Extd
name or list of names for constructing the extended variable names
Description
This routine is part of the liesymm package and is loaded via with(liesymm).
Given one or more partial differential equations this routine constructs a set of differential forms which after closure is equivalent to the original system of equations in the sense of Cartan. The forms are obtained by first reducing the system of PDEs to a system of first order equations. It will handle systems which are quasi-linear.
If more than one equation is given, they must be given as a list or a set.
The second argument specifies the dependent and independent variables as in . If there is more than one dependent variable, these must be specified as a set or list. The Maple expression can be used to construct the required list when more than one dependent variable is involved.
The third argument is used to construct the names of the extended variables. If it is the name k then the names k1, k2, k3, ..., kn are constructed as needed. If a list of names is provided then these names are used in place of k1, k2, ..., kn.
The dependent variables (as defined by ) are processed in the order given. For each dependent variable we introduce extended variables corresponding to the partial derivatives with respect to t and x in that order. These extended variables are in turn treated as dependent variables until the reduction to first order is achieved. The resulting coordinate list is with k1 and k2 being the partials of h with respect to t and x and w3 and w4 being the partials of u with respect to t and x.
Examples
See Also
liesymm, liesymm[annul], liesymm[close], liesymm[determine], liesymm[setup], with
Download Help Document