Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
dsolve/piecewise - find solution of ordinary differential equations with piecewise coefficients
Description
The dsolve function solves differential equations with piecewise coefficients. It solves general first order linear, linear constant coefficient with piecewise perturbation, and Riccati equations. It can handle some cases where the differential equation is solved by integration or variation of parameters.
The solutions are found in terms of distribution theory and translated into a piecewise expression.
You can verify a solution by substituting the solution into the equation. However, if the differential equation has jump discontinuities, the verification must be done in terms of Heaviside functions because the derivative at a discontinuous point is undefined in the piecewise function.
The theory is based on the dissertation Martin von Mohrenschildt. "Symbolic Solutions of Discontinuous Differential Equations." Swiss Federal Institute of Technology ETHZ No. 10768
Examples
First Order:
Linear with discontinuous perturbation:
Solutions can also be tested by using odetest.
Non linear:
See Also
convert[Heaviside], convert[piecewise] , dsolve, dsolve[taylorseries], odetest, piecewise
Download Help Document