Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Black-Scholes Model
Model Overview
Analytic Solution
Monte Carlo Simulation
Differential Equations
In this application, we compute the option price using three different methods. The first method is to derive the analytical solution to the option price based on the classical Black-Scholes model. Next, we compute the option price through Monte Carlo simulation based on the Black-Scholes model for stock price estimation. Finally, we use the Black-Scholes differential equation model to estimate the option price.
Overview of the Model
We consider the classical Black-Scholes model with single risky asset that follows a geometric Brownian motion
where () is a standard Brownian motion, is the constant volatility, is the constant risk-free rate and is the initial asset price. Under these conditions, for any the stock price is given by the following formula.
We consider a security with time to maturity and the payoff function.
Payoff of the form corresponds to a digital call options with strike price, .
We will consider several methods for computing the price of this security.
Parameters
can be represented in the form
where is a lognormal random variable with parameters and .
The price of this option can be computed as the discounted expected payoff of the option
Analytic Price
We can use the analytic result to study the various market sensitivities. For example, we can symbolically compute the delta of our option.
Here is a formula for the Gamma.
We can also use the symbolic formula to plot the option price as a function of the parameters.
Alternatively, we can estimate the expectation using Monte Carlo simulation to compute the option price. The discrete-time version of the model is
where , and is drawn from the lognormal distribution with parameters and . We can use this expression to generate a sample path for the price of our risky asset.
Simulating Stock Prices
*please be patient, it may take a few seconds to generate a sample
Number of Replications
Number of Updates
Note: We know the distribution of the final stock price. To compute the option price, we need only to simulate the final stock price, and not the whole stock path.
We can verify the above analytic result using Monte Carlo simulation.
Option Price
Standard Error
Finally, we can use the Black-Scholes differential equations to compute the option price.
The key boundary condition is:
Another obvious condition:
Finally, if for some , then it holds with a high probability that . Our option will thus be exercised and produce cash flow
Numeric PDE Solver
Space Step
Time Step
Download Help Document