Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[IndefiniteSum][Hypergeometric] - compute closed forms of indefinite sums of hypergeometric terms
Calling Sequence
Hypergeometric(f, k, opt)
Parameters
f
-
hypergeometric term in k
k
name
opt
(optional) equation of the form failpoints=true or failpoints=false
Description
The Hypergeometric(f, k) command computes a closed form of the indefinite sum of with respect to .
The following algorithms are used to handle indefinite sums of hypergeometric terms (see the References section):
Gosper's algorithm,
Koepf's extension to Gosper's algorithm, and
the algorithm to compute additive decompositions of hypergeometric terms developed by Abramov and Petkovsek.
If the option failpoints=true (or just failpoints for short) is specified, then the command returns a pair , where is the closed form of the indefinite sum of w.r.t. , as above, and are lists of points where does not exist or the computed sum is undefined or improper, respectively (see SumTools[IndefiniteSum][Indefinite] for more detailed help).
The command returns if it is not able to compute a closed form.
Examples
Gosper's algorithm:
The points where the telescoping equation fails:
Error, numeric exception: division by zero
Koepf's extension to Gosper's algorithm:
Abramov and Petkovsek's algorithm (note that the specified summand is not hypergeometrically summable):
Error, (in SumTools:-Hypergeometric:-Gosper) no solution found
See Also
SumTools[IndefiniteSum], SumTools[IndefiniteSum][Indefinite]
References
Abramov, S.A., and Petkovsek, M. "Rational Normal Forms and Minimal Decompositions of Hypergeometric Terms." Journal of Symbolic
Gosper, R.W., Jr. "Decision Procedure for Indefinite Hypergeometric Summation." Proceedings of the National Academy of Sciences USA. Vol. 75. (1978): 40-42.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Abramov, S.A. and Petkovsek, M. "Gosper's Algorithm, Accurate Summation, and the discrete Newton-Leibniz formula." Proceedings ISSAC'05. (2005): 5-12.
Download Help Document