Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[IndefiniteSum][HomotopySum] - compute closed forms of indefinite sums of expressions containing unspecified functions
Calling Sequence
HomotopySum(E, k)
Parameters
E
-
any algebraic expression
k
name, specifies the summation index
Description
The HomotopySum command allows for the symbolic summation of expressions containing unspecified functions of a discrete variable. A typical example is HomotopySum(u[k+1]-u[k], k), which returns .
HomotopySum uses discrete homotopy methods to find an anti-difference of the given expression - see the reeferences at the end.
Notes
This command is based on code written by Bernard Deconinck, Michael A. Nivala, and Matthew S. Patterson.
Examples
If no anti-difference is found, HomotopySum minimizes the number of terms remaining unsummed, as well as the order of their summation indices.
The input expression may contain combinations of specified and unspecified functions of the summation index.
See Also
SumTools, SumTools[IndefiniteSum]
References
Hereman, W.; Colagrosso, M.; Sayers, R.; Ringler, A.; Deconinck, B.; Nivala, M.; and Hickman, M. "Continuous and Discrete Homotopy Operators with Applications in Integrability Testing." In Differential Equations with Symbolic computation, pp. 255-290. Edited by D. Wang and Z. Zheng. Birkhauser, 2005.
Download Help Document