Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Hypergeometric][MinimalZpair] - compute the minimal Z-pair
SumTools[Hypergeometric][MinimalTelescoper] - compute the minimal telescoper
Calling Sequence
MinimalZpair(T, n, k, En)
MinimalTelescoper(T, n, k, En)
Parameters
T
-
hypergeometric term of n and k
n
name
k
En
name; denote the shift operator with respect to n
Description
For a specified hypergeometric term of n and k, MinimalZpair(T, n, k, En) constructs for the minimal Z-pair ; MinimalTelescoper(T, n, k, En) constructs for the minimal telescoper .
L and G satisfy the following properties:
1. is a linear recurrence operator in En with polynomial coefficients in n.
2. is a hypergeometric term of n and k.
3. , where denotes the shift operator with respect to k.
4. The order of L w.r.t. En is minimal.
The execution steps of MinimalZpair can be described as follows.
1. Determine the applicability of Zeilberger's algorithm to .
2. If it is proven in Step 1 that a Z-pair for does not exist, return the conclusive error message ``Zeilberger's algorithm is not applicable''. Otherwise,
a. If is a rational function in n and k, apply the direct algorithm to compute the minimal Z-pair for .
b. If is a nonrational term, first compute a lower bound u for the order of the telescopers for . Then compute the minimal Z-pair using Zeilberger's algorithm with u as the starting value for the guessed orders.
For case 2b, since the term T2 in the additive decomposition of T is ``simpler'' than T in some sense, we first apply Zeilberger's algorithm to T2 to obtain the minimal Z-pair for T2. It is easy to show that is the minimal Z-pair for the input term T.
Examples
Case 1: Zeilberger's algorithm is not applicable to the input term T.
Error, (in SumTools:-Hypergeometric:-MinimalZpair) Zeilberger's algorithm is not applicable
Case 2a: Rational Function
Case 2b: Hypergeometric
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][IsZApplicable], SumTools[Hypergeometric][LowerBound], SumTools[Hypergeometric][Zeilberger], SumTools[Hypergeometric][ZpairDirect]
References
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings ICMS'2002, pp. 319- 329. World Scientific, 2002.
Download Help Document