Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Hypergeometric][DefiniteSum] - compute the definite sum
Calling Sequence
DefiniteSum(T, n, k, l..u)
Parameters
T
-
function of n
n
name
k
l..u
range for k
Description
For a specified hypergeometric term T of n and k, the DefiniteSum(T, n, k, l..u) command computes, if it exists, a closed form for the definite sum .
Let r, s, u, v be integers. The DefiniteSum command computes closed forms for four types of definite sums. They are , , , and .
A closed form is defined as one that can be represented as a sum of hypergeometric terms or as a d'Alembertian term.
If the input T is a definite sum of a hypergeometric term, and if the environment variable _EnvDoubleSum is set to true, then DefiniteSum tries to find a closed form for the specified definite sum of T. Note that this operation can be very expensive.
For more information on the construction of the minimal Z-pair for T, see ExtendedZeilberger.
Note: If you set infolevel[DefiniteSum] to 3, Maple prints diagnostics.
Examples
Set the infolevel to 3.
DefiniteSum: "try algorithms for definite sum" Definite: "Construct the Zeilberger's recurrence" Definite: "Solve the recurrence equation ..." Definite: "Find hypergeometric solutions" Definite: "Find a particular d'Alembertian solution" Definite: "Solve the homogeneous linear recurrence equation" Definite: "Construction of the general solution successful" Definite: "Solve the initial-condition problem"
See Also
infolevel, LinearOperators[dAlembertianSolver], LREtools[hypergeomsols], sum, SumTools[Hypergeometric], SumTools[Hypergeometric][ExtendedZeilberger], SumTools[Hypergeometric][IndefiniteSum], SumTools[Hypergeometric][Zeilberger]
References
Abramov, S.A., and Zima, E.V. "D'Alembertian Solutions of Inhomogeneous Linear Equations (differential, difference, and some other)." Proceedings ISSAC'96, pp. 232-240. 1996.
Petkovsek, M. "Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficients." Journal of Symbolic Computing. Vol. 14. (1992): 243-264.
van Hoeij, M. "Finite Singularities and Hypergeometric Solutions of Linear Recurrence Equations." Journal of Pure and Applied Algebra. Vol. 139. (1999): 109-131.
Zeilberger, D. "The Method of Creative Telescoping." Journal of Symbolic Computing. Vol. 11. (1991): 195-204.
Download Help Document