Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Hypergeometric][BottomSequence] - bottom sequence of a hypergeometric term
Calling Sequence
BottomSequence(T, x, opt)
Parameters
T
-
hypergeometric term in x
x
name
opt
(optional) equation of the form primitive=true or primitive=false
Description
Consider as an analytic function in satisfying a linear difference equation , where and are polynomials in . For and any integer , let be the -th coefficient of the Laurent series expansion for at . An integer is called depth of if for all and all integers , and for some .
The bottom sequence of is the doubly infinite sequence defined as for all integers , where is the depth of . The command BottomSequence(T, x) returns the bottom sequence of in form of an expression representing a function of (integer values of) . Typically, this is a piecewise expression.
The bottom sequence is defined at all integers and satisfies the same difference equation as .
If is Gosper-summable and is its indefinite sum found by Gosper's algorithm, then the depth of is also . If the optional argument primitive=true (or just primitive) is specified, the command returns a pair , where is the bottom sequence of and is the bottom sequence of or FAIL if is not Gosper-summable.
Note that this command rewrites expressions of the form in terms of GAMMA functions .
If assumptions of the form and/or are made, the depth and the bottom of are computed with respect to the given interval instead of .
Compatibility
The SumTools[Hypergeometric][BottomSequence] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
Note that is not equivalent to :
Error, numeric exception: division by zero
However, satisfies the same difference equation as :
is an indefinite sum of :
Now assume that :
With that assumption, and are equivalent, and is an indefinite sum of both:
Example of a hypergeometric term with parameters:
Note that is considered non-integer.
Warning, the assumptions about variable(s) k are ignored
See Also
assuming, binomial, SumTools[DefiniteSum][SummableSpace], SumTools[Hypergeometric], SumTools[Hypergeometric][Gosper]
References
S.A. Abramov, M. Petkovsek. "Analytic solutions of linear difference equations, formal series, and bottom summation." Proc. of CASC'07, (2007): 1-10.
S.A. Abramov, M. Petkovsek. "Gosper's Algorithm, Accurate Summation, and the Discrete Newton-Leibniz Formula." Proceedings of ISSAC'05, (2005): 5-12.
Download Help Document