Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Trapezoidal Rule
Calling Sequence
ApproximateInt(f(x), x = a..b, method = trapezoid, opts)
ApproximateInt(f(x), a..b, method = trapezoid, opts)
ApproximateInt(Int(f(x), x = a..b), method = trapezoid, opts)
Parameters
f(x)
-
algebraic expression in variable 'x'
x
name; specify the independent variable
a, b
algebraic expressions; specify the interval
opts
equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options
Description
The ApproximateInt(f(x), x = a..b, method = trapezoid) command approximates the integral of f(x) from a to b by using the trapezoidal Rule. The first two arguments (function expression and range) can be replaced by a definite integral.
If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.
Given a partition of the interval , the trapezoidal rule approximates the integral on each subinterval by integrating the linear function that interpolates the endpoints and . This value is
In the case that the widths of the subintervals are equal, the approximation can be written as
By default, the interval is divided into equal-sized subintervals.
For the options opts, see the ApproximateInt help page.
This rule can be applied interactively, through the ApproximateInt Tutor.
Examples
See Also
Boole's Rules, Newton-Cotes Rules, Simpson's 3/8 Rule, Simpson's Rule, Student, Student plot options, Student[Calculus1], Student[Calculus1][ApproximateInt], Student[Calculus1][ApproximateIntTutor], Student[Calculus1][RiemannSum], Student[Calculus1][VisualizationOverview]
Download Help Document