Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Sqrfree - inert square-free factorization function
Calling Sequence
Sqrfree(a)
Parameters
a
-
multivariate polynomial or a multivariate rational function
Description
The Sqrfree function is a placeholder for representing the square-free factorization of the multivariate polynomial or rational function a over a unique factorization domain. It is used in conjunction with either mod, modp1 or evala which define the coefficient domain as described below.
The Sqrfree function returns a data structure of the form such that and is primitive and square-free and is the leading coefficient of a. That is, for all and for .
The call Sqrfree(a) mod p computes the square-free factorization of the polynomial a modulo p a prime integer. The multivariate polynomial a must have rational coefficients or coefficients from an algebraic extension of the integers modulo p.
The call modp1(Sqrfree(a), p) computes the square-free factorization of the polynomial a in the modp1 representation modulo p a prime integer.
The call evala(Sqrfree(a)) computes the square-free factorization of the polynomial or the rational function a where the coefficients of a are algebraic numbers (or functions) defined by RootOf or radicals. See evala,Sqrfree for more information.
Examples
See Also
Factors, isqrfree, mod, modp1, RootOf, sqrfree
Download Help Document