Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
ScientificErrorAnalysis[Variance] - return the variance of a quantity-with-error
Calling Sequence
Variance( obj )
Parameters
obj
-
quantity-with-error
Description
The Variance( obj ) command returns the variance of the quantity-with-error obj.
The quantity-with-error obj can have functional dependence on other quantities-with-error.
If the quantity-with-error obj does not have functional dependence on other quantities-with-error, the uncertainty of obj is accessed and converted to the variance (by squaring).
If the quantity-with-error obj has functional dependence on other quantities-with-error, the variance is calculated using the usual formula of error analysis involving a first-order expansion with the dependent form and covariances between the other quantities-with-error. This process can be recursive.
The variance in , where depends on the , is
where is the error in , is the covariance between and , and the partials are evaluated at the central values of the .
Variances involving physical constants are calculated naturally and correctly in the implied system of units because central values and errors are obtained from the interface to ScientificConstants.
Examples
See Also
combine/errors, ScientificConstants, ScientificConstants[Constant], ScientificConstants[GetConstant], ScientificConstants[GetError], ScientificErrorAnalysis, ScientificErrorAnalysis and ScientificConstants, ScientificErrorAnalysis[Covariance], ScientificErrorAnalysis[GetCorrelation], ScientificErrorAnalysis[Quantity], ScientificErrorAnalysis[SetCorrelation]
Download Help Document