Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
ScientificErrorAnalysis[Covariance] - return the covariance between two quantities-with-error
Calling Sequence
Covariance( obj1, obj2 )
Parameters
obj1
-
quantity-with-error
obj2
Description
The Covariance( obj1, obj2 ) command returns the covariance between the quantities-with-error obj1 and obj2.
Either of the quantities-with-error obj1 and obj2 can have functional dependence on other quantities-with-error.
If neither of the quantities-with-error obj1 and obj2 has functional dependence on other quantities-with-error, the correlation between obj1 and obj2 is accessed and converted to the covariance.
The relationship between the correlation and covariance is
where and are the errors in and , respectively.
If either of the quantities-with-error obj1 and obj2 has functional dependence on other quantities-with-error, the covariance is calculated using the usual formula of error analysis involving a first-order expansion with the dependent forms and covariances between the other quantities-with-error. This process can be recursive.
The covariance between and , where depends on the , and depends on the , is
where is the covariance between and , and the partials are evaluated at the central values of the and .
Covariances involving physical constants are calculated naturally and correctly in the implied system of units because central values and errors are obtained from the interface to ScientificConstants.
Unusual cases are possible involving the covariance between the same physical constant in different systems of units, but correct results are obtained. In the case of a nonderived constant, the identical identifiers obtained from the interface to ScientificConstants cause Covariance to obtain the uncertainty from both objects. In the case of a derived constant, the general double summation of the error analysis formula is evaluated as usual (over the same functional form).
Examples
See Also
combine/errors, evalf, ScientificConstants, ScientificConstants[Constant], ScientificConstants[GetConstant], ScientificErrorAnalysis, ScientificErrorAnalysis and ScientificConstants, ScientificErrorAnalysis[GetCorrelation], ScientificErrorAnalysis[Quantity], ScientificErrorAnalysis[SetCorrelation], ScientificErrorAnalysis[Variance]
Download Help Document