Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Ratrecon - inert rational function reconstruction
Calling Sequence
Ratrecon(u, m, x, N, D) mod p
Ratrecon(u, m, x, N, D, 'n', 'd') mod p
Parameters
u, m
-
polynomials in x
x
name
N, D
(optional) non-negative integers
n, d
(optional) variables
p
integer > 1
Description
This routine reconstructs a rational function from its image where u and m are polynomials in , and is a field of characteristic p.
Given and non-negative integers N and D, if the call Ratrecon(u,m,x,N,D) mod p succeeds then the output is a rational function n/d in x such that
Otherwise Ratrecon returns FAIL indicating that no such polynomials n and d exist. The reconstruction is unique up to multiplication by a constant in if the following condition holds.
N + D < degree(m,x)
If the optional parameters N and D are not specified then they are determined by the degree of m. They are assigned the largest possible values satisfying the above constraint such that N=D or N-D=1.
If the optional parameters n and d are specified then Ratrecon returns either true or false. If rational reconstruction succeeds then true is returned and these parameters are assigned the numerator and denominator separately, otherwise false is returned and these parameters are not changed.
The special case of corresponds to computing the (N, D) Pade approximate to the series u of order .
If the first input u is a polynomial in variables other than x then Ratrecon is applied to the coefficients of the polynomial in those variables. See the last example in the Examples section.
For the special case of , the polynomial is the inverse of u in provided u and m are relatively prime.
Examples
See Also
convert[ratpoly], iratrecon, mod, ratrecon
Download Help Document