Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialTools[Shorten] - try to make polynomial smaller by substitutions
PolynomialTools[Shorter] - compare two polynomials
PolynomialTools[Sort] - sort a list of polynomials
Calling Sequence
Shorter(f, g, x)
Sort(v, x)
Shorten(f, x)
Parameters
f
-
polynomial
g
v
list of polynomials
x
indeterminate
Description
The Shorter function determines if f is shorter than g, where "shorter" means:
smaller length
monic in x
no fractions
lower degree in other variables
The Sort function sorts a list of polynomials in x according to the ordering defined by Shorter.
The Shorten function applies Mobius transformations to f in an effort to make f shorter (in the above sense). More precisely, the following transformations are tried: whenever has([a, b, c, d], x)=false and . Furthermore, a polynomial f may be divided by lcoeff(f, x) or by content(f, x), or by any expression that does not contain x.
When a field extension is given by an irreducible polynomial f, these procedures can be used to search for a simpler polynomial representing the same field extension.
If f contains only one variable, then the second argument x in Shorten is optional.
This function is part of the PolynomialTools package, and so it can be used in the form Shorten(..) only after executing the command with(PolynomialTools). However, it can always be accessed through the long form of the command by using PolynomialTools[Shorten](..).
Examples
Download Help Document