Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[VanishingIdeal] - compute the vanishing ideal for finite a set of points
Calling Sequence
VanishingIdeal(S, X)
VanishingIdeal(S, X, T, p)
Parameters
S
-
list or set of points
X
list of variable names
T
(optional) monomial order
p
(optional) characteristic, a non-negative integer
Description
The VanishingIdeal command constructs the vanishing ideal for a set of points in affine space. The output of this command is the ideal of polynomials that vanish (that is, are identically zero) on S.
The first argument must be a list or set of points in affine space. Each point is given as a list with coordinates corresponding to the variables in X.
The third argument is optional, and specifies a monomial order for which a Groebner basis is computed. If omitted, VanishingIdeal chooses lexicographic order, which is generally the fastest order.
The field characteristic can be specified with an optional last argument. The default is characteristic zero.
Multiple occurrences of the same point in S are ignored, so that VanishingIdeal always returns a radical ideal.
Examples
See Also
alias, Groebner[Basis], MonomialOrders, PolynomialIdeals, PolynomialIdeals[IdealInfo], PolynomialIdeals[PrimeDecomposition], PolynomialIdeals[Simplify]
References
Farr, Jeff. Computing Grobner bases, with applications to Pade approximation and algebraic coding theory. Ph.D. Thesis, Clemson University, 2003.
Download Help Document