Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[Simplify] - put an ideal into a canonical form
Calling Sequence
Simplify(J)
Simplify(J, X)
Simplify(J, T)
Simplify(J, S)
Simplify(J, Z)
Parameters
J
-
polynomial ideal, or sequence of ideals
X
(optional) set of variables
T
(optional) monomial ordering
S
(optional) set of substitutions
Z
(optional) set of inequations
Description
The Simplify command attempts to simplify an ideal using a Groebner basis. It always detects whether the ideal is equivalent to the entire polynomial ring.
The Simplify command can be applied directly to sequences of ideals, but must be mapped onto lists and sets.
A monomial order, T, can be specified as an optional argument, forcing ideals into a canonical form.
The set of ring variables can also be overridden using an optional argument. If the new variables are a subset of the original ones, this computes the extension of the ideal in the new polynomial ring. The Contract command inverts this process when it is possible to do so. Groebner bases that are stored by the system are not preserved under this operation.
Simplify can optionally perform syntactic substitutions prior to the computation of a Groebner basis. This is equivalent to using the eval command on the ideal generators. Stored Groebner bases are not preserved under this operation.
Simplify can also simplify under the assumption that certain expressions are not equal. This functionality is equivalent to that of the Saturate command, and can be of great assistance on large problems.
Examples
Force a canonical form.
R is a difficult system to solve.
R1 is much easier to solve.
See Also
Groebner[Basis], map, MonomialOrders, PolynomialIdeals, PolynomialIdeals[Contract], PolynomialIdeals[HilbertDimension], PolynomialIdeals[IdealInfo], PolynomialIdeals[Saturate]
Download Help Document