Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LommelS1 - the Lommel function s
LommelS2 - the Lommel function S
Calling Sequence
LommelS1(mu, nu, z)
LommelS2(mu, nu, z)
Parameters
mu
-
algebraic expression
nu
z
Description
The LommelS1(mu, nu, z) function is defined in terms of the hypergeometric function
FunctionAdvisor( definition, LommelS1);
and LommelS2(mu, nu, z) is defined in terms of LommelS1(mu, nu, z) and Bessel functions.
LommelS2(mu,nu,z) = convert(LommelS2(mu,nu,z), LommelS1);
These functions solve the non-homogeneous linear differential equation of second order.
z^2*diff(f(z),`$`(z,2))+z*diff(f(z),z)+(z^2-nu^2)*f(z) = z^(mu+1);
The Lommel functions also solve the following third order linear homogeneous differential equation with polynomial coefficients.
FunctionAdvisor( DE, LommelS1(mu,nu,z));
Examples
The AngerJ and WeberE, StruveH and StruveL functions can be viewed as particular cases of LommelS1.
A MeijerG representation for the Lommel functions.
The series expansion of the Lommel functions is not computable using the series command because it would involve factoring out abstract powers, leading to a result of the form z^mu1*series_1 + z^mu2*series_2 + .... This type of extended series expansion, however, can be computed using the Series command of the MathematicalFunctions package.
See Also
AngerJ, FunctionAdvisor, hypergeom, MathematicalFunctions, MeijerG, Struve Functions, WeberE
References
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover publications.
Gradshteyn, and Ryzhik. Table of Integrals, Series and Products. 5th ed. Academic Press.
Luke, Y. The Special Functions and Their Approximations. Vol. 1 Chap. 6.
Download Help Document