Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LREtools[ValuesAtPoint] - formulas for the values of the solution of difference equation and its derivatives of the given order and at the given point.
Calling Sequence
ValuesAtPoint(L, E, fun, HalfInt_opt, Point_opt, Order_opt)
Parameters
L
-
linear difference operator in E with coefficients which are polynomials in x
E
name of the shift operator acting on x
fun
function f(x) that is a solution of
HalfInt_opt
(optional) 'HalfInterval'= A, A is a rational number, 0 by default
Point_opt
(optional) 'Point'=p, p is a rational number or an algebraic number in the indexed RootOf representation (see,RootOf,indexed), 0 by default
Order_opt
(optional) 'OrderDer'=m, m is non-negative integer, 0 by default.
Description
The ValuesAtPoint command returns formulas for the values of the function and its derivatives of the given order and at the given point in Point_opt. It also computes conditions for the analyticity of the function at the given point.
The input includes a difference operator
L := sum(a[i](x)* E^i,i=1..d);
and the point A. Specify the point 'Point'=p to compute the value f(x) and its derivatives at , and non-negative integer via the option Order_opt to specify the highest order of required derivatives of f(x) at
The procedure returns 2 sets:
The set of conditions. f(x) is assumed to be analytic on some open set which contains a set . Elements of the set give the conditions of the analyticity of f(x) at . They are relations between the values of the function and, possibly several of its derivatives at the points into .
The set of formulas for computing ,...,. (f(x) must satisfy the conditions in the first set.) These formulas give the values of ,..., as linear combinations of f(x) and several of its derivatives in . For , we have one unique formula for .
Examples
See Also
LREtools, LREtools[AnalyticityConditions], LREtools[IsDesingularizable]
References
Abramov, S.A., and van Hoeij, M. "Set of Poles of Solutions of Linear Difference Equations with Polynomial Coefficients." Computation Mathematics and Mathematical Physics. Vol. 43 No. 1. (2003): 57-62.
Download Help Document