Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Overview of the GF (Galois Field) Package
Calling Sequence
GF(p, k, a)
Parameters
p
-
prime integer
k
positive integer
a
(optional) irreducible polynomial of degree k over the integers mod p
Description
The GF command returns a module G of procedures and constants for doing arithmetic in the finite field GF(p^k), a Galois Field with elements. The field GF(p^k) is defined by the field extension GF(p)[x]/(a) where a is an irreducible polynomial of degree k over the integers mod p.
If a is not specified, an irreducible polynomial of degree k over the integers mod p is chosen at random. It can be accessed as the constant G:-extension. The elements of GF(p^k) are represented using the representation.
First, you need to define an instance of a Galois field using, for example, G := GF(2, 3). This defines all operations for G, the field of characteristic 2 with 8 elements.
The G:-input and G:-output commands convert from an integer in the range to the corresponding polynomial and back. Alternatively, G:-ConvertIn and G:-ConvertOut convert an element from GF(p^k) to a Maple sum of products, a univariate polynomial where the variable used is that given in the argument a. Otherwise the name `?` is used.
Arithmetic in the field is defined by the following functions. G:-`+`, G:-`-`, G:-`*`, G:-`^`, G:-inverse, G:-`/`
Field arithmetic can be written very naturally by using a use statement; see the examples below.
The additive and multiplicative identities are given by G:-zero and G:-one.
The G:-trace, G:-norm, and G:-order commands compute the trace, norm and multiplicative order of an element from GF(p^k) respectively.
The G:-random command returns a random element from GF(p^k).
The G:-PrimitiveElement command generates a primitive element at random.
The G:-isPrimitiveElement command tests whether an element from GF(p^k) is a primitive element, being a generator for the multiplicative group GF(p^k) - {0}.
For backwards compatibility, exports of the module returned by the GF command can also be accessed by indexed notation, such as G[':-ConvertIn']. However, using the more modern form G:-ConvertIn, you do not need to quote the name to avoid evaluation.
Examples
The use statement, if used carefully, can make arithmetic operations in the field much more natural.
See Also
Domains, mod, modp1
Download Help Document