Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
FunctionAdvisor/differentiation_rule - return the differentiation rule of a given mathematical function
Calling Sequence
FunctionAdvisor(differentiation_rule, math_function)
Parameters
differentiation_rule
-
literal name; 'differentiation_rule'
math_function
Maple name of mathematical function
Description
The FunctionAdvisor(differentiation_rule, math_function) command returns the differentiation rule for the function.
Examples
The variables used by the FunctionAdvisor command to create the calling sequence are local variables. To make the FunctionAdvisor command return results using global variables, pass the actual function call instead of the function name. Compare the following two input and output groups.
* Partial match of "diff" against topic "differentiation_rule".
For functions which accept different numbers of parameters, you can specify for which function call you want the differentiation rule by specifying the function with the appropriate number of arguments. For example, for Zeta, if given with only one argument specified, it represents the Hurwitz Zeta function and its differentiation rule is the following.
As another example, consider the exponential integral Ei.
See Also
Ei, FunctionAdvisor, FunctionAdvisor/DE, FunctionAdvisor/topics, Zeta
Download Help Document