Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Compute Local Volatility and Implied Volatility Using the Finance Package
Fitting Implied Volatility Surface
First let us import prices of S&P 500 call options available on October 27, 2006.
Extract data from this matrix.
Value of the underlying, risk-free rate and dividend yield.
Extract times and strikes for which data is available.
Implied volatilities for options maturing in December 2006.
Implied volatilities for options maturing in December 2007.
We will use the following model for the volatility surface.
We can compute the corresponding Black-Scholes price as a function of strike and maturity.
We can use non-linear fitting routines from the statistics data to find the values of that best fit our data. Construct a matrix of parameters and a vector of the corresponding value of the objective function.
Here is the corresponding implied volatility function.
Here is another way to estimate these parameters.
We can compare both fits with the actual implied volatilities.
Modeling with Local Volatility
We will consider the same model for the local volatility except that in this case we will use parameters that were fit to some market data.
Consider two functions. The first one returns the Black-Scholes price of a European call option for our model. The second one returns the Black-Scholes price of a European put option for our model. We will assume that these functions are given two us (e.g. obtained by interpolating the market data) and will try to determine the corresponding local volatility term structure.
Construct the corresponding local volatility surface.
We can construct the corresponding local volatility surface and implied volatility surface.
We can now construct a Black-Scholes process which has the volatility structure we just obtained.
As an alternative, we can use the implied volatility surface to construct an implied trinomial tree.
Compute some option prices. We can use Monte-Carlo simulation to price European-style options and lattice methods to price American-style options.
Here is an example of an Asian-type option with European exercise.
Download Help Document