Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
EllipticModulus - Modulus function k(q)
Calling Sequence
EllipticModulus(q)
Parameters
q
-
expression denoting a complex number such that
Description
Given the Nome q, , entering the definition of Jacobi Theta functions, for instance
FunctionAdvisor(definition, JacobiTheta1)[1];
EllipticModulus computes the corresponding Modulus k, entering the definition of related elliptic integrals and JacobiPQ elliptic functions.
FunctionAdvisor(definition, EllipticF)[1];
FunctionAdvisor(definition, JacobiSN)[1];
FunctionAdvisor(definition, JacobiAM);
Alternatively, given the Modulus k, entering Elliptic integrals and JacobiPQ functions, it is possible to compute the corresponding Nome q, , using EllipticNome, which is the inverse function of EllipticModulus.
EllipticModulus is defined in terms of JacobiTheta functions by:
FunctionAdvisor( definition, EllipticModulus );
The JacobiPQ functions can be expressed in terms of JacobiTheta functions using EllipticNome
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
Alternative popular notations for elliptic integrals and JacobiPQ functions involve a parameter m or a modular angle alpha, as for instance in the Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). These are related to k by and sin(alpha) = k. For example, the Elliptic function shown in A&S is numerically equal to the Maple command.
Examples
See Also
EllipticF, EllipticNome, FunctionAdvisor
Download Help Document