Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[IntegrateForm] - evaluate a p-fold iterated integral of a differential p-form
Calling Sequence
IntegrateForm(omega, integrationlimits)
Parameters
omega
-
a differential p-form on a p-dimensional manifold N
integrationlimits
a p-term sequence t1 = a1 .. b1, t2 = a1(t1) .. b1(t1), t3 = a3(t1, t2) .. b3(t1, t2), ..., where t1, t2, t3, ... are coordinates on N, defining a p-dimensional region in N
Description
With respect to the coordinates t1, t2, t3, ... on N, the p-form omega can be written as omega = f(t1, t2, t3, ...) dt1 &w dt2 &w dt3 .... The command IntegrateForm integrates the function f(t1, t2, t3, ...) over the p-dimensional region defined by t1 = a1 .. b1, t2 = a1(t1) ... b1(t1), t3 = a3(t1, t2) ... b3(t1, t2), ....
In many cases one is interested in integrating a p-form omega on a manifold M over an imbedding submanifold phi : N -> M. This is done in the DifferentialGeometry package by first computing the pullback theta = Phi^*(omega) with the Pullback command and then integrating the resulting p-form theta over N with the IntegrateForm command.
In many cases a more efficient alternative to the IntegrateForm command is provided by the VectorCalculus[int] command.
This command is part of the DifferentialGeometry package, and so can be used in the form IntegrateForm(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-IntegrateForm.
Examples
Example 1.
Integrate the 2-form (x^2 + 3*x*y)*dx &w dy over the triangle T with vertices (0, 0), (1, 0), and (0, 1).
To evaluate the double integral over T we note that for a point (x, y) in T the variable x ranges from 0 to 1 and, for a given x value, y ranges from 0 to 1 - x.
Example 2.
Compute the line integral of the 1-form omega = y^2*dx + z^2*dy + x*y*z*dz along the curve x = sin(t)*cos(t), y = sin(t)*cos(t), z = exp(t) from t = 0 to t = Pi.
Example 3.
Compute the surface integral of the 1-form omega = y^2*z^2*dx &w dy + x^2*y^2*dy &w dz + x^2*z^2*dx &w dz over the surface of the ellipsoid x^2 + y^2/4 + z^2/9 = 1.
We shall parameterize the surface of the ellipsoid with coordinates (theta, phi) and map x = cos(theta)*sin(phi), y = 2*sin(theta)*sin(phi), z = 3*cos(phi).
See Also
DifferentialGeometry, Pullback, Transformation, VectorCalculus[int]
Download Help Document