Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
VectorCalculus[ConvertVector] - converts Cartesian free Vectors, rooted Vectors and position Vectors among themselves
Calling Sequence
ConvertVector(v,form)
ConvertVector(v,form, root )
Parameters
v
-
'Vector'(algebraic); the Cartesian free Vector, rooted Vector or position Vector to convert
form
name; specify the type of Vector to be converted to: free, rooted or position
root
(optional) list(algebraic) or Vector(algebraic); root point of the converted Vector
Description
The ConvertVector command converts Cartesian free Vectors, rooted Vectors and position Vectors among themselves by specifying the desired type. If v is not a Cartesian Vector an error is raised.
If form is rooted, the root point can be specified as a list or a free Vector with the extra optional parameter root. If root is a list, it is interpreted in Cartesian coordinates, if it is a free Vector in non-Cartesian coordinates, an appropiate transformation is made to obtain a Cartesian root.
If form is rooted, v is a free, rooted or position Vector and root is provided, the result is the Vector rooted at root.
If form is rooted, v is a position Vector and root is not provided, then the Vector is rooted at the Cartesian origin.
If form is rooted, v is a free Vector and root is not provided an error is raised.
Examples
See Also
VectorCalculus, VectorCalculus[About], VectorCalculus[PlotPositionVector], VectorCalculus[PositionVector]
Download Help Document