Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[NumericalAnalysis][AddPoint] - return an interpolated polynomial structure with a newly added point
Calling Sequence
AddPoint(p, pts)
AddPoint(p, pts, bcs)
Parameters
p
-
a POLYINTERP structure
pts
numeric, list(numeric, numeric), list(numeric, numeric,numeric); the new data point (node) to be added
bcs
list(numeric, numeric); new boundary conditions for an interpolating polynomial created using the cubic spline method
Description
The AddPoint command takes the point(s) to be added and recomputes the interpolated polynomial from p with the new point(s) and returns the adjusted POLYINTERP structure.
This command is convenient because it prevents you from having to reenter all previous options and data with the new point into the PolynomialInterpolation command or the CubicSpline command to create a new POLYINTERP structure.
If the POLYINTERP structure was created using the CubicSpline command and the boundary conditions are not natural, then new boundary conditions bcs at the end points must be specified.
Notes
This procedure operates numerically; that is, inputs that are not numeric are first evaluated to floating-point numbers before computations proceed.
Examples
Add another node.
The Neville Table now has another row.
See Also
Student[NumericalAnalysis], Student[NumericalAnalysis][BasisFunctions], Student[NumericalAnalysis][ComputationOverview], Student[NumericalAnalysis][CubicSpline], Student[NumericalAnalysis][DividedDifferenceTable], Student[NumericalAnalysis][InterpolantRemainderTerm], Student[NumericalAnalysis][NevilleTable], Student[NumericalAnalysis][PolynomialInterpolation]
Download Help Document