Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][SeparateSolutions] - decomposition into pairwise disjoint regular chains
Calling Sequence
SeparateSolutions(l_rc, R)
Parameters
l_rc
-
list of regular chains
R
polynomial ring
Description
The command SeparateSolutions(l_rc, R) returns a list of square-free regular chains such that the ideals they generate are pairwise relatively prime.
The input regular chains must be zero-dimensional.
The algorithm is based on GCD computations.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form SeparateSolutions(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][SeparateSolutions](..).
Examples
Consider a polynomial ring with two variables
Consider two regular chains in R
These two regular chains share a common solution. The union of their zero sets can be made disjoint. In other words we can replace these two regular chains by another set of regular chains such that the two sets decribe the same solutions and the second one consists of pairwise disjoint zero sets of regular chains. This is done as follows
See Also
Equations, NumberOfSolutions, PolynomialRing, RegularChains, Triangularize
Download Help Document