Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Physics[GrassmannParity] - compute the Grassmannian parity, as 0, 1 or undefined, according to whether an expression is commutative, anticommutative or noncommutative
Calling Sequence
GrassmannParity(expression)
Parameters
expression
-
algebraic expression, or relation between them, or a set or list of them
Description
The GrassmannParity command computes the Grassmannian parity of expression, that is, 0, 1 or undefined, according to whether expression is commutative, anticommutative or noncommutative. In this sense, the parity here is equivalent to the type.
Compatibility
The Physics[GrassmannParity] command was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
Set theta as an anticommutative prefix (see Setup)
The parity of (3) is 0 despite the presence of anticommutative variables: a product of two of them is overall commutative
A commutative function of commutative and anticommutative variables: its parity is zero
A taylor expansion as well as an exact expansion for it respectively performed with Gtaylor and ToFieldComponents
Note that the expansion performed with Gtaylor does not preserve the parity of (5) while the one performed with ToFieldComponents does:
The coefficient of order zero of both expansions preserves the parity; the difference appears with respect to the the coefficient of order 1
To understand this difference between the Taylor and the exact expansions performed with Gtaylor and ToFieldComponents see the expansion's definitions in the respective help pages
See Also
anticommutative, Coefficients, commutative, Physics, Physics conventions, Physics examples, relation, series, Setup, ToFieldComponents
Download Help Document