Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
MatrixPolynomialAlgebra[MatrixGCRD] - compute a greatest common right divisor of 2 matrices of polynomials in row-reduced form
MatrixPolynomialAlgebra[MatrixGCLD] - compute a greatest common left divisor of 2 matrices of polynomials in column-reduced form
Calling Sequence
MatrixGCRD(A, B, x, U, V)
MatrixGCLD(A, B, x, U, V)
Parameters
A
-
Matrix of polynomials
B
x
variable name of the polynomial domain
U
(optional) list of two matrices of polynomials
V
Description
The MatrixGCRD(A, B, x) command computes a right matrix GCD of two matrices of polynomials. Both input matrices of polynomials can be square or rectangular, but must have the same number of columns. The entries are either univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q (that is, univariate polynomials in x with coefficients in Q(a1,...,an)).
It is required that the matrix of polynomials have full column rank.
The fourth argument is optional. It is used to return a list of matrices. These matrices satisfy the matrix linear diophantine equation U1 . A + U2 . B = MatrixGCRD(A,B).
The fifth argument is optional. It is used to return a list of matrices. These matrices satisfy the matrix linear diophantine equation . This is useful. If B is square and nonsingular this gives a left-reduced matrix rational function.
The MatrixGCLD(A, B, x) command returns a left matrix GCD with optional arguments for returning solutions for matrix linear diophantine equations and right-reduced matrix rational functions. It is required that the matrix of polynomials have full row rank.
The method used is a fraction-free algorithm by Beckermann and Labahn that computes a matrix GCD using Mahler systems.
Examples
Left matrix GCDs:
Left matrix extended GCD:
Left matrix extended GCD with 2 matrix diophantine equations:
Right matrix GCDs:
Right matrix extended GCD:
Right matrix extended GCD with 2 matrix diophantine equations:
See Also
expand, indets, map, Matrix, MatrixPolynomialAlgebra, MatrixPolynomialAlgebra[HermiteForm], MatrixPolynomialAlgebra[MahlerSystem], MatrixPolynomialAlgebra[MatrixLCLM], MatrixPolynomialAlgebra[PopovForm]
References
Beckermann, B., and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications. Vol. 22 No. 1, (2000): 114-144.
Download Help Document