Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Overview of the LinearOperators Package
Calling Sequence
LinearOperators[command](arguments)
command(arguments)
Description
The main functionalities of the LinearOperators package are the following.
- Given a linear equation with a d'Alembertian right-hand side, find a d'Alembertian solution if it exists.
- Given a d'Alembertian term, find a completely factorable annihilator of the term.
- Given a d'Alembertian term, find the minimal annihilator of the term.
- Given a d'Alembertian term, find the minimal completely factorable annihilator of the term.
- Given two operators, find their greatest common right divisor in factored form.
- Given an operator L, find the annihilator of the term g that is primitive for the solution f of Ly=0, and the operator K that converts f to g such that K(y)=g (if they exist). This is called accurate integration.
There are commands that convert between Ore operators and the corresponding Maple expressions. See LinearOperators[converters].
Each command in the LinearOperators package can be accessed by using either the long form or the short form of the command name in the command calling sequence.
As the underlying implementation of the LinearOperators package is a module, it is also possible to use the form LinearOperators:-command to access a command from the package. For more information, see Module Members.
List of LinearOperators Package Commands
The following is a list of available commands.
Apply
converters
dAlembertianSolver
DEToOrePoly
FactoredAnnihilator
FactoredGCRD
FactoredMinimalAnnihilator
FactoredOrePolyToDE
FactoredOrePolyToOrePoly
FactoredOrePolyToRE
IntegrateSols
MinimalAnnihilator
OrePolyToDE
OrePolyToRE
REToOrePoly
To display the help page for a particular LinearOperators command, see Getting Help with a Command in a Package.
Examples
See Also
diffop, LinearOperators[converters], LinearOperators[dAlembertianSolver], LREtools, module, Ore_algebra, UsingPackages
Download Help Document