Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[RandomGraphs][RandomGraph]
Calling Sequence
RandomGraph(n,p,options)
RandomGraph(n,m,options)
Parameters
n
-
positive integer or a list of vertex labels
p
real number between 0.0 and 1.0
m
non-negative integer
options
sequence of options (see below)
Description
RandomGraph(n,p) creates an undirected unweighted graph on n vertices where each possible edge is present with probability p where 0.0 <= p <= 1.0.
RandomGraph(n,m) creates an undirected unweighted graph on n vertices and m edges where the m edges are chosen uniformly at random. The value of m must satisfy 0 <= m <= binomial(n,2) = n*(n-1)/2.
If the first input is a positive integer n, then the vertices are labeled 1,2,...,n. Alternatively, you may specify the vertex labels in a list.
If the option directed is specified, a random directed graph is chosen. This is equivalent to using the RandomDigraph command.
If the option connected is specified, the graph created is connected, and hence has at least n-1 edges. For RandomGraph(n,m,connected), m must be at least n-1. A random tree is first created, then the remaining m-n+1 edges are chosen uniformly at random. For RandomGraph(n,p,connected), a random tree is first created then each remaining edge is present with probability p.
If the option degree=d is specified, and d-regular n vertex graph is possible, then a random d-regular graph having n vertices will be returned. Note that this option cannot be present with the directed option. When this option is used the number of edges m may be omitted, but if provided must be consistent with the number of edges in a d-regular n vertex graph. This is equivalent to using the RandomRegularGraph command.
If the option weights=m..n is specified, where m <= n are integers, the graph is a weighted graph with integer edge weights chosen from [m,n] uniformly at random. The weight matrix W in the graph has datatype=integer, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.
If the option weights=x..y where x <= y are decimals is specified, the graph is a weighted graph with numerical edge weights chosen from [x,y] uniformly at random. The weight matrix W in the graph has datatype=float[8], that is, double precision floats (16 decimal digits), and if the edge from vertex i to j is not in the graph then W[i,j] = 0.0.
If the option weights=f where f is a function (a Maple procedure) that returns a number (integer, rational, or decimal number), then f is used to generate the edge weights. The weight matrix W in the graph has datatype=anything, and if the edge from vertex i to j is not in the graph then W[i,j] = 0.
The random number generator used can be seeded using the randomize function.
Examples
f := proc() local x; x := U(); if x=1 then 1 else 2 fi end:
See Also
AssignEdgeWeights, GraphTheory[IsConnected], GraphTheory[WeightMatrix], RandomBipartiteGraph, RandomDigraph, RandomNetwork, RandomRegularGraph, RandomTournament, RandomTree
Download Help Document