Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[IsVertexColorable]
Calling Sequence
IsVertexColorable(G, k, col)
IsVertexColorable(G, k, d, col)
Parameters
G
-
undirected graph
k
non-negative integer (the number of colors)
d
(optional) positive integer (distance)
col
(optional) name
Description
The IsVertexColorable(G,k) function returns true if the graph G is k-colorable and false otherwise. That is, if the vertices of G can be colored with k colors such that no two adjacent vertices have the same color.
If an optional argument d is specified, then IsVertexColorable(G,k,d) returns true if the graph G is (k,d) colorable, and false otherwise. That is, it returns true if the vertices of G can be colored with k colors such that two vertices with any given color are at least distance d apart. When d is not specified it is assumed to be 1.
If a name col is specified, then this name is assigned the list of colors of a coloring of the vertices of G, if it exists.
The algorithm first tries a greedy coloring of the vertices of G starting with a maximum clique in G. If this fails to find a k-coloring it does an exhaustive search using a backtracking algorithm. The problem of testing if a graph is k-colorable is NP-complete, meaning that no efficient (polynomial time) algorithm is known. The exhaustive search will take exponential time on some graphs.
Examples
See Also
ChromaticNumber, CircularChromaticNumber, GreedyColor, IsEdgeColorable
Download Help Document