Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GAMMA - Gamma and incomplete Gamma functions
lnGAMMA - log-Gamma function
Calling Sequence
GAMMA(z)
GAMMA(a, z)
lnGAMMA(z)
Parameters
z
-
algebraic expression
a
Description
The Gamma function is defined for Re(z)>0 by
and is extended to the rest of the complex plane, less the non-positive integers, by analytic continuation. GAMMA has a simple pole at each of the points z=0,-1,-2,....
The incomplete Gamma function is defined as:
where 1F1 is the confluent hypergeometric function (in Maple notation, 1F1(a,1+a,-z) = hypergeom([a],[1+a],-z)).
For Re(a)>0, we also have the integral representation
(Some authors refer to Maple's incomplete Gamma function as the complementary or upper incomplete Gamma function, and call GAMMA(a)-GAMMA(a,z) the incomplete or lower incomplete Gamma function.)
The GAMMA function extends the classical factorial function to the complex plane: GAMMA( n ) = (n-1)!. In general, Maple does not distinguish these two functions, although the factorial function will evaluate for any positive integer, while for integer n, GAMMA(n) will evaluate only if n is not too large. Use expand to force GAMMA(n) to evaluate.
You can enter the command GAMMA using either the 1-D or 2-D calling sequence. For example, GAMMA(5) is equivalent to .
For positive real arguments z, the lnGAMMA function is defined by:
For complex z, Maple evaluates the principal branch of the log-Gamma function, which is defined by analytic continuation from the positive real axis. Each of the points z=0,-1,-2,..., is a singularity and a branch point, and the union of the branch cuts is the negative real axis. On the branch cuts, the values of lnGAMMA(z) are determined by continuity from above. (Note, therefore, that lnGAMMA <> ln@GAMMA in general.)
Examples
See Also
Beta, convert, expand, factorial, initialfunctions, Psi, simplify/GAMMA
References
Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953.
Hare, D. E. G. "Computing the Principal Branch of log-Gamma." Journal of Algorithms, (November 1997): 221-236.
Download Help Document