Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry:-Tools[&MatrixMinus, &MatrixMult, &MatrixPlus, &MatrixWedge]
Calling Sequence
A &MatrixMinus B - subtract two Matrices/Vectors of vectors, differential forms or tensors
A &MatrixMult C - multiply a Matrix/Vector A of vectors, differential forms or tensors by a scalar C or a Matrix/Vector C of scalars
C &MatrixMult A - multiply a Matrix A of vectors, differential forms or tensors by a scalar C or a Matrix/Vector C of scalars
A &MatrixPlus B - add two Matrices/Vectors of vectors, differential forms or tensors
E &MatrixWedge F - calculate the Matrix wedge product of two Matrices/Vectors of differential forms.
Parameters
A, B
-
two Matrices/Vectors of vectors, differential forms or tensors
C
a scalar or a Matrix/Vector of scalars
E, F
two Matrices/Vectors of differential forms
Description
These commands provide, within the DifferentialGeometry environment, the basic arithmetical operations for Matrices or Vectors of: vectors, differential forms, or tensors. They are particularly useful for curvature calculations for connections on principle bundles of matrix groups.
These commands are part of the DifferentialGeometry:-Tools package, and so can be used in the form described above only after executing the commands with(DifferentialGeometry) and with(Tools) in that order.
Examples
Define a 3-dimensional manifold M with coordinates [x, y, z].
Example 1
Define two column Vectors of 1 forms A, B; a 2x2 matrix C of scalars; a row Vector of 1 forms E and a 2x2 Matrix of 1 forms F.
Perform various arithmetic operations with the quantities A, B, C, E, F.
See Also
DifferentialGeometry, LinearAlgebra, AlgebraicOperations, evalDG, DGzip, Matrix, Vector
Download Help Document