Tensor[RainichConditions] - check that a metric tensor satisfies the Rainich conditions
Calling Sequences
RainichConditions option)
RainichConditions option)
Parameters
g - a metric tensor
R - the Ricci tensor
CR - a rank 3 tensor, the covariant derivative of the Ricci tensor
alpha - (optional) an unevaluated name
option - the keyword argument output = "tensor"
|
Description
|
|
•
|
There are 2 algebraic Rainich conditions and 1 differential condition
|
C1: C2: C3: d = 0, where
•
|
Space-times which satisfy these Rainich conditions are called electro-vac space-times.
|
•
|
If the Rainich conditions hold, then an electromagnetic field which solves the Einstein-Maxwell equations can be found. See RainichElectromagneticField.
|
•
|
The command RainichConditions returns true or false. With output = "tensor", the 3 tensors defined by the left-hand sides of the equations C1, C2, C3 are returned. If the argument alpha is present, then the value of the 1-form in C3 is assigned to alpha.
|
|
|
Examples
|
|
>
|
with(DifferentialGeometry): with(Tensor):
|
Example 1.
We define a space-time metric and check that the Rainich conditions hold.
M >
|
DGsetup([t, x, y, z], M):
|
M >
|
g := evalDG(4/3*t^2* dx &t dx + t*(exp(-2*x)* dy &t dy + exp(2*x)*dz &t dz) - dt &t dt);
|
| (2.1) |
1. First calling sequence.
M >
|
RainichConditions(g);
|
| (2.2) |
2. To use the 2nd calling sequence first calculate the Ricci tensor and its covariant derivative.
| (2.3) |
![_DG([["connection", M, [["cov_bas", "con_bas", "cov_bas"], []]], [[[1, 2, 2], 1/t], [[1, 3, 3], (1/2)/t], [[1, 4, 4], (1/2)/t], [[2, 1, 2], (4/3)*t], [[2, 2, 1], 1/t], [[2, 3, 3], -1], [[2, 4, 4], 1], [[3, 1, 3], (1/2)*exp(-2*x)], [[3, 2, 3], (3/4)*exp(-2*x)/t], [[3, 3, 1], (1/2)/t], [[3, 3, 2], -1], [[4, 1, 4], (1/2)*exp(2*x)], [[4, 2, 4], -(3/4)*exp(2*x)/t], [[4, 4, 1], (1/2)/t], [[4, 4, 2], 1]]])](/support/helpjp/helpview.aspx?si=5669/file05908/math189.png)
| (2.4) |
M >
|
CR := CovariantDerivative(R, C);
|
![_DG([["tensor", M, [["cov_bas", "cov_bas", "cov_bas"], []]], [[[1, 1, 1], -1/t^3], [[1, 3, 3], -(1/2)*exp(-2*x)/t^2], [[1, 4, 4], -(1/2)*exp(2*x)/t^2], [[2, 2, 1], (4/3)/t], [[2, 3, 3], exp(-2*x)/t], [[2, 4, 4], -exp(2*x)/t], [[3, 1, 3], -(1/2)*exp(-2*x)/t^2], [[3, 2, 3], exp(-2*x)/t], [[3, 3, 1], -exp(-2*x)/t^2], [[4, 1, 4], -(1/2)*exp(2*x)/t^2], [[4, 2, 4], -exp(2*x)/t], [[4, 4, 1], -exp(2*x)/t^2]]])](/support/helpjp/helpview.aspx?si=5669/file05908/math196.png)
| (2.5) |
M >
|
RainichConditions(g, R, CR);
|
| (2.6) |
3. Let's see the value of the 1-fom from equation C3.
M >
|
RainichConditions(g, R, CR, 'alpha');
|
| (2.7) |
| (2.8) |
Example 2
We consider a metric depending upon 2 arbitrary functions and determine those functions for which the Rainich conditions hold.
M >
|
DGsetup([t, x, y, z], M):
|
M >
|
g := (1/x^2) &mult evalDG(A(x)*dx &t dx + B(x)*dy &t dy + 1/z^2*dz &t dz - z^2*dt &t dt);
|
| (2.9) |
Here are the Rainich conditions. The first condition is too complicated to display here, but the 2nd and 3rd are simple.
M >
|
C1, C2, C3 := RainichConditions(g, output = "tensor"):
|
![-(1/2)*(24*A(x)*B(x)^2+4*x^2*A(x)^2*B(x)^2-6*x*B(x)*A(x)*(diff(B(x), x))+6*x*(diff(A(x), x))*B(x)^2-(diff(B(x), x))^2*x^2*A(x)-(diff(B(x), x))*x^2*(diff(A(x), x))*B(x)+2*B(x)*x^2*A(x)*(diff(diff(B(x), x), x)))/(A(x)^2*B(x)^2), _DG([["form", M, 2], [[[1, 2], 0]]])](/support/helpjp/helpview.aspx?si=5669/file05908/math263.png)
| (2.10) |
To impose the Rainich conditions, we set the coefficients of the tensors and to zero. The command DGinfo/"CoefficientSet" gives us these coefficients. Again, they are too long to display here.
M >
|
Eq := Tools:-DGinfo(C1, "CoefficientSet") union Tools:-DGinfo(C2, "CoefficientSet"):
|
We see that there are a total of 5 scalar conditions on .
| (2.11) |
Here is one of the Rainich conditions.

| (2.12) |
We use pdsolve to solve all the Rainich conditions.
M >
|
solution := pdsolve(Eq);
|
| (2.13) |
For these values of the metric defines an electro-vac space-time.
|
|