>
|

|
We calculate a factorization of Weyl spinors of each Petrov type and we use the command SymmetrizeIndices to verify that the factorization is correct.
We first create a spinor bundle over a 4-dimensional spacetime.
>
|
|
| (2.1) |
In order to construct the Weyl spinors for our examples, we need a basis for the vector space of symmetric rank 4 spinors. This we obtain from the GenerateSymmetricTensors command.
Spin >
|
|

| (2.2) |
Set the global environment variable _EnvExplicit to true to insure that our factorizations are free of
expressions.
Spin >
|
|
Example 1. Type I
Define a rank 4 spinor
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 6], [[5, 5, 5, 6], 3], [[5, 5, 6, 5], 3], [[5, 5, 6, 6], 5], [[5, 6, 5, 5], 3], [[5, 6, 5, 6], 5], [[5, 6, 6, 5], 5], [[5, 6, 6, 6], 6], [[6, 5, 5, 5], 3], [[6, 5, 5, 6], 5], [[6, 5, 6, 5], 5], [[6, 5, 6, 6], 6], [[6, 6, 5, 5], 5], [[6, 6, 5, 6], 6], [[6, 6, 6, 5], 6], [[6, 6, 6, 6], 6]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math184.png)
| (2.3) |
Calculate the Newman-Penrose coefficients for
with respect to the given dyad basis
.
Spin >
|
|
| (2.4) |
Use the Newman-Penrose coefficients to find the Petrov type of
Spin >
|
|
| (2.5) |
Factor
Spin >
|
|
![[_DG([["form", Spin, 1], [[[5], 1/2+I-((1/2)*I)*3^(1/2)], [[6], I]]]), _DG([["form", Spin, 1], [[[5], 1/2-I-((1/2)*I)*3^(1/2)], [[6], -I]]]), _DG([["form", Spin, 1], [[[5], 1/2+I+((1/2)*I)*3^(1/2)], [[6], I]]]), _DG([["form", Spin, 1], [[[5], 1/2-I+((1/2)*I)*3^(1/2)], [[6], -I]]])], 6](/support/helpjp/helpview.aspx?si=5645/file05871/math223.png)
| (2.6) |
We check that this answer is correct by computing the symmetric tensor product of the 4 spinors
.
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 6], [[5, 5, 5, 6], 3], [[5, 5, 6, 5], 3], [[5, 5, 6, 6], 5], [[5, 6, 5, 5], 3], [[5, 6, 5, 6], 5], [[5, 6, 6, 5], 5], [[5, 6, 6, 6], 6], [[6, 5, 5, 5], 3], [[6, 5, 5, 6], 5], [[6, 5, 6, 5], 5], [[6, 5, 6, 6], 6], [[6, 6, 5, 5], 5], [[6, 6, 5, 6], 6], [[6, 6, 6, 5], 6], [[6, 6, 6, 6], 6]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math236.png)
| (2.7) |
Spin >
|
|
| (2.8) |
Example 2. Type II
Define a rank 4 spinor
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 4], [[5, 5, 5, 6], 1], [[5, 5, 6, 5], 1], [[5, 5, 6, 6], 1], [[5, 6, 5, 5], 1], [[5, 6, 5, 6], 1], [[5, 6, 6, 5], 1], [[5, 6, 6, 6], 4], [[6, 5, 5, 5], 1], [[6, 5, 5, 6], 1], [[6, 5, 6, 5], 1], [[6, 5, 6, 6], 4], [[6, 6, 5, 5], 1], [[6, 6, 5, 6], 4], [[6, 6, 6, 5], 4], [[6, 6, 6, 6], 10]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math257.png)
| (2.9) |
Calculate the Newman-Penrose coefficients for
with respect to the given dyad basis
.
Spin >
|
|
| (2.10) |
Find the Petrov type of
Spin >
|
|
| (2.11) |
Factor
Spin >
|
|
![[_DG([["form", Spin, 1], [[[5], (1/3)*3^(1/2)], [[6], (1/3)*3^(1/2)]]]), _DG([["form", Spin, 1], [[[5], (1/3)*3^(1/2)], [[6], (1/3)*3^(1/2)]]]), _DG([["form", Spin, 1], [[[5], ((1/3)*I)*3^(1/2)+(1/3)*3^(1/2)], [[6], -((2/3)*I)*3^(1/2)+(1/3)*3^(1/2)]]]), _DG([["form", Spin, 1], [[[5], -((1/3)*I)*3^(1/2)+(1/3)*3^(1/2)], [[6], ((2/3)*I)*3^(1/2)+(1/3)*3^(1/2)]]])], 18](/support/helpjp/helpview.aspx?si=5645/file05871/math296.png)
| (2.12) |
Note that the first two factors are identical.
Spin >
|
|
| (2.13) |
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 4], [[5, 5, 5, 6], 1], [[5, 5, 6, 5], 1], [[5, 5, 6, 6], 1], [[5, 6, 5, 5], 1], [[5, 6, 5, 6], 1], [[5, 6, 6, 5], 1], [[5, 6, 6, 6], 4], [[6, 5, 5, 5], 1], [[6, 5, 5, 6], 1], [[6, 5, 6, 5], 1], [[6, 5, 6, 6], 4], [[6, 6, 5, 5], 1], [[6, 6, 5, 6], 4], [[6, 6, 6, 5], 4], [[6, 6, 6, 6], 10]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math319.png)
| (2.14) |
Spin >
|
|
| (2.15) |
Example 3. Type III
Define a rank 4 spinor
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], -8], [[5, 5, 5, 6], -5*I], [[5, 5, 6, 5], -5*I], [[5, 5, 6, 6], 2], [[5, 6, 5, 5], -5*I], [[5, 6, 5, 6], 2], [[5, 6, 6, 5], 2], [[5, 6, 6, 6], -I], [[6, 5, 5, 5], -5*I], [[6, 5, 5, 6], 2], [[6, 5, 6, 5], 2], [[6, 5, 6, 6], -I], [[6, 6, 5, 5], 2], [[6, 6, 5, 6], -I], [[6, 6, 6, 5], -I], [[6, 6, 6, 6], 4]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math340.png)
| (2.16) |
Calculate the Newman-Penrose coefficients for
with respect to the given dyad basis
.
Spin >
|
|
| (2.17) |
Find the Petrov type of
Spin >
|
|
| (2.18) |
Factor
Spin >
|
|
![[_DG([["form", Spin, 1], [[[5], -(1/2)*6^(1/2)+((1/2)*I)*6^(1/2)], [[6], (-1/2-(1/2)*I)*6^(1/2)]]]), _DG([["form", Spin, 1], [[[5], -(1/2)*6^(1/2)+((1/2)*I)*6^(1/2)], [[6], (-1/2-(1/2)*I)*6^(1/2)]]]), _DG([["form", Spin, 1], [[[5], -(1/2)*6^(1/2)+((1/2)*I)*6^(1/2)], [[6], (-1/2-(1/2)*I)*6^(1/2)]]]), _DG([["form", Spin, 1], [[[5], (1/9-(1/9)*I)*6^(1/2)], [[6], (-1/18-(1/18)*I)*6^(1/2)]]])], -4](/support/helpjp/helpview.aspx?si=5645/file05871/math379.png)
| (2.19) |
Note that the first three factors are identical.
Spin >
|
|
| (2.20) |
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], -8], [[5, 5, 5, 6], -5*I], [[5, 5, 6, 5], -5*I], [[5, 5, 6, 6], 2], [[5, 6, 5, 5], -5*I], [[5, 6, 5, 6], 2], [[5, 6, 6, 5], 2], [[5, 6, 6, 6], -I], [[6, 5, 5, 5], -5*I], [[6, 5, 5, 6], 2], [[6, 5, 6, 5], 2], [[6, 5, 6, 6], -I], [[6, 6, 5, 5], 2], [[6, 6, 5, 6], -I], [[6, 6, 6, 5], -I], [[6, 6, 6, 6], 4]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math402.png)
| (2.21) |
Spin >
|
|
| (2.22) |
Example 4. Type D
Define a rank 4 spinor
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 3], [[5, 5, 5, 6], -9/2], [[5, 5, 6, 5], -9/2], [[5, 5, 6, 6], 1/2], [[5, 6, 5, 5], -9/2], [[5, 6, 5, 6], 1/2], [[5, 6, 6, 5], 1/2], [[5, 6, 6, 6], 18], [[6, 5, 5, 5], -9/2], [[6, 5, 5, 6], 1/2], [[6, 5, 6, 5], 1/2], [[6, 5, 6, 6], 18], [[6, 6, 5, 5], 1/2], [[6, 6, 5, 6], 18], [[6, 6, 6, 5], 18], [[6, 6, 6, 6], 48]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math423.png)
| (2.23) |
Calculate the Newman-Penrose coefficients for
with respect to the given dyad basis
.
Spin >
|
|
| (2.24) |
Find the Petrov type of
Spin >
|
|
| (2.25) |
Factor
Spin >
|
|
| (2.26) |
Note that the first two factors and last two factors are identical.
Spin >
|
|
| (2.27) |
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 3], [[5, 5, 5, 6], -9/2], [[5, 5, 6, 5], -9/2], [[5, 5, 6, 6], 1/2], [[5, 6, 5, 5], -9/2], [[5, 6, 5, 6], 1/2], [[5, 6, 6, 5], 1/2], [[5, 6, 6, 6], 18], [[6, 5, 5, 5], -9/2], [[6, 5, 5, 6], 1/2], [[6, 5, 6, 5], 1/2], [[6, 5, 6, 6], 18], [[6, 6, 5, 5], 1/2], [[6, 6, 5, 6], 18], [[6, 6, 6, 5], 18], [[6, 6, 6, 6], 48]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math485.png)
| (2.28) |
Spin >
|
|
| (2.29) |
Example 5. Type N
Define a rank 4 spinor
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 1], [[5, 5, 5, 6], 3], [[5, 5, 6, 5], 3], [[5, 5, 6, 6], 9], [[5, 6, 5, 5], 3], [[5, 6, 5, 6], 9], [[5, 6, 6, 5], 9], [[5, 6, 6, 6], 27], [[6, 5, 5, 5], 3], [[6, 5, 5, 6], 9], [[6, 5, 6, 5], 9], [[6, 5, 6, 6], 27], [[6, 6, 5, 5], 9], [[6, 6, 5, 6], 27], [[6, 6, 6, 5], 27], [[6, 6, 6, 6], 81]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math506.png)
| (2.30) |
Calculate the Newman-Penrose coefficients for
with respect to the given dyad basis
.
Spin >
|
|
| (2.31) |
Find the Petrov type of
Spin >
|
|
| (2.32) |
Factor
Spin >
|
|
| (2.33) |
Note that all four factors are identical.
Spin >
|
|
| (2.34) |
We check that this factorization is correct by computing the symmetric tensor product of the 4 spinors
Spin >
|
|
![_DG([["tensor", Spin, [["cov_vrt", "cov_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 1], [[5, 5, 5, 6], 3], [[5, 5, 6, 5], 3], [[5, 5, 6, 6], 9], [[5, 6, 5, 5], 3], [[5, 6, 5, 6], 9], [[5, 6, 6, 5], 9], [[5, 6, 6, 6], 27], [[6, 5, 5, 5], 3], [[6, 5, 5, 6], 9], [[6, 5, 6, 5], 9], [[6, 5, 6, 6], 27], [[6, 6, 5, 5], 9], [[6, 6, 5, 6], 27], [[6, 6, 6, 5], 27], [[6, 6, 6, 6], 81]]])](/support/helpjp/helpview.aspx?si=5645/file05871/math568.png)
| (2.35) |
Spin >
|
|
| (2.36) |