Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Query[ReductivePair] - check if a subalgebra, subspace pair defines a reductive pair in a Lie algebra
Calling Sequences
Query(S, M, "ReductivePair")
Query(S, M, parm, "ReductivePair")
Parameters
S - a list of independent vectors which defines a subalgebra in a Lie algebra g
M - a list of independent vectors which defines a complementary subspace to S in g
parm - (optional) a set of parameters appearing in the list of vectors S
Description
A subspace M defines a reductive complement to the subalgebra S in a Lie algebra g if g = S + M (vector space direct sum) and [x, y] in M for all x in S and all y in M.
Query(S, M, "ReductivePair") returns true if the subspace M defines a reductive complement to the subalgebra S.
Query(S, M, parm, "ReductivePair") returns a sequence TF, Eq, Soln, reductiveList. Here TF is true if Maple finds parameter values for which M is a reductive complement and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for M to be a reductive complement; Soln is the list of solutions to the equations Eq; and reductiveList is the list of reductive subspaces obtained from the parameter values given by the different solutions in Soln.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
First initialize a Lie algebra.
[e3, e4] is not a reductive complement for [e1, e2] but [e1, e2] is a reductive complement for [e3, e4].
Now we look for the most general reductive complement for [e3, e4].
The only possibility is [e1, e2].
Note that the ComplementaryBasis function can be used to generate the most general complementary subspace. This helps to calculate reductive complements for subalgebras.
See Also
DifferentialGeometry, LieAlgebras, ComplementaryBasis, Query
Download Help Document