LieAlgebras[ParabolicSubalgebra] - find the parabolic subalgebra defined by a set of simple roots or a set of restricted simple roots
LieAlgebras[ParabolicSubalgebraRoots] - find the simple roots which generate a parabolic subalgebra
Calling Sequences
ParabolicSubalgebra(
ParabolicSubalgebra(
ParabolicSubalgebraRoots()
ParabolicSubalgebraRoots()
Parameters
Sigma - a list or set of column vectors, defining a subset of simple roots
T1 - a table, with indices that include "RootSpaceDecomposition", "CartanSubalgebra", "SimpleRoots", and "PositiveRoots"
T2 - a table, with indices that include "RestrictedRootSpaceDecomposition", "CartanSubalgebraDecomposition", "RestrictedSimpleRoots" and "RestrictedPositiveRoots"
Par - a list of vectors in a Lie algebra, defining a parabolic subalgebra
|
Description
|
|
•
|
Let g be a semi-simple Lie algebra. A Borel subalgebra
b is any maximal solvable subalgebra. A parabolic subalgebra p is any subalgebra containing a Borel subalgebra b. Alternatively, a subalgebra p is parabolic if its nilradical is the orthogonal complement of p with respect to the Killing form
|
•
|
For the parabolic subalgebras of a real semi-simple Lie algebra the situation is essentially the same except that one must consider the restricted root space decomposition relative to a maximal Abelian subalgebra a on which the Killing form is positive-definite.
|
•
|
With the keyword argument method = "non-compact", a real parabolic subalgebra is calculated.
|
•
|
With the standard Borel subalgebra is returned.
|
|
|
Examples
|
|
>
|
|
Example 1.
We calculate the parabolic subalgebras for We use the command SimpleLieAlgebraData to initialize the Lie algebra.
>
|
|
>
|
|
| (2.1) |
We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, root space decomposition etc.
sl4 >
|
|
Here are the properties we need:
sl4 >
|
|
| (2.2) |
sl4 >
|
|
| (2.3) |
sl4 >
|
|
| (2.4) |
sl4 >
|
|
| (2.5) |
The possible subsets of the simple roots are:
sl4 >
|
|
| (2.6) |
The possible parabolic subalgebras of are therefore:
sl >
|
|
| (2.7) |
sl4 >
|
|
| (2.8) |
sl4 >
|
|
| (2.9) |
sl4 >
|
|
| (2.10) |
sl4 >
|
|
| (2.11) |
sl4 >
|
|
| (2.12) |
sl4 >
|
|
| (2.13) |
sl4 >
|
|
| (2.14) |
The Query command can be used to check that these subalgebras are parabolic subalgebra.
sl4 >
|
|
| (2.15) |
sl4 >
|
|
| (2.16) |
With the command ParabolicSubalgebraRoots, we can find the simple roots used to create the parabolic algebra .
sl4 >
|
|
| (2.17) |
Example 2.
We calculate (real) parabolic subalgebras for We use the command SimpleLieAlgebraData to initialize the Lie algebra.
sl4 >
|
|
sl4 >
|
|
| (2.18) |
We use the command SimpleLieAlgebraProperties to calculate the restricted root space decomposition and the restricted simple roots.
so53 >
|
|
so53 >
|
|
| (2.19) |
sl4 >
|
|
| (2.20) |
The possible subsets of restricted simple roots are:
so53 >
|
|
| (2.21) |
The parabolics subalgebras defined by these sets of restricted roots are:
so53 >
|
|
| (2.22) |
so53 >
|
|
| (2.23) |
so53 >
|
|
| (2.24) |
so53 >
|
|
| (2.25) |
so53 >
|
|
| (2.26) |
so53 >
|
|
| (2.27) |
so53 >
|
|
| (2.28) |
so53 >
|
|
| (2.29) |
Check that the subalgebra defined by (2.26) is parabolic.
so53 >
|
|
| (2.30) |
so53 >
|
|
| (2.31) |
Find the restricted roots used to define .
so53 >
|
|
| (2.32) |
|
See Also
|
|
DifferentialGeometry,
CartanSubalgebra, Killing
, LieAlgebras, PositiveRoots, SimpleRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition, Signature, SimpleLieAlgebraData, SimpleLieAlgebraProperties
|
|
|