LieAlgebras[ParabolicSubalgebra] - find the parabolic subalgebra defined by a set of simple roots or a set of restricted simple roots
LieAlgebras[ParabolicSubalgebraRoots] - find the simple roots which generate a parabolic subalgebra
Calling Sequences
ParabolicSubalgebra(
ParabolicSubalgebra(
ParabolicSubalgebraRoots( )
ParabolicSubalgebraRoots( )
Parameters
Sigma - a list or set of column vectors, defining a subset of simple roots
T1 - a table, with indices that include "RootSpaceDecomposition", "CartanSubalgebra", "SimpleRoots", and "PositiveRoots"
T2 - a table, with indices that include "RestrictedRootSpaceDecomposition", "CartanSubalgebraDecomposition", "RestrictedSimpleRoots" and "RestrictedPositiveRoots"
Par - a list of vectors in a Lie algebra, defining a parabolic subalgebra
|
Description
|
|
•
|
Let g be a semi-simple Lie algebra. A Borel subalgebra
b is any maximal solvable subalgebra. A parabolic subalgebra p is any subalgebra containing a Borel subalgebra b. Alternatively, a subalgebra p is parabolic if its nilradical is the orthogonal complement of p with respect to the Killing form 
|
•
|
For the parabolic subalgebras of a real semi-simple Lie algebra the situation is essentially the same except that one must consider the restricted root space decomposition relative to a maximal Abelian subalgebra a on which the Killing form is positive-definite.
|
•
|
With the keyword argument method = "non-compact", a real parabolic subalgebra is calculated.
|
•
|
With the standard Borel subalgebra is returned.
|
|
|
Examples
|
|
>
|
 
|
Example 1.
We calculate the parabolic subalgebras for We use the command SimpleLieAlgebraData to initialize the Lie algebra.
>
|
![LD := SimpleLieAlgebraData("sl(4)", sl4, labelformat = "gl", labels = [E, omega])](/support/helpjp/helpview.aspx?si=6602/file05822/math185.png)
|
>
|

|

| (2.1) |
We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, root space decomposition etc.
sl4 >
|

|
Here are the properties we need:
sl4 >
|
![CSA := P["CartanSubalgebra"]](/support/helpjp/helpview.aspx?si=6602/file05822/math234.png)
|
![[_DG([["vector", sl4, []], [[[1], 1]]]), _DG([["vector", sl4, []], [[[2], 1]]]), _DG([["vector", sl4, []], [[[3], 1]]])]](/support/helpjp/helpview.aspx?si=6602/file05822/math237.png)
| (2.2) |
sl4 >
|
![RSD := eval(P["RootSpaceDecomposition"])](/support/helpjp/helpview.aspx?si=6602/file05822/math241.png)
|

| (2.3) |
sl4 >
|
![SR := P["SimpleRoots"]](/support/helpjp/helpview.aspx?si=6602/file05822/math248.png)
|
![SR := [Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 1, (2) = 1, (3) = 2})]](/support/helpjp/helpview.aspx?si=6602/file05822/math251.png)
| (2.4) |
sl4 >
|
![PR := P["PositiveRoots"]](/support/helpjp/helpview.aspx?si=6602/file05822/math255.png)
|
![PR := [Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 1, (2) = 1, (3) = 2}), Vector(3, {(1) = 1, (2) = 0, (3) = -1}), Vector(3, {(1) = 1, (2) = 2, (3) = 1}), Vector(3, {(1) = 2, (2) = 1, (3) = 1})]](/support/helpjp/helpview.aspx?si=6602/file05822/math258.png)
| (2.5) |
The possible subsets of the simple roots are:
sl4 >
|
![Sigma := [[], SR[1 .. 1], SR[2 .. 2], SR[3 .. 3], SR[1 .. 2], SR[2 .. 3], [SR[1], SR[3]], SR]](/support/helpjp/helpview.aspx?si=6602/file05822/math274.png)
|

| (2.6) |
The possible parabolic subalgebras of are therefore:
sl >
|
![Sigma[1], ParabolicSubalgebra(Sigma[1], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math293.png)
|

| (2.7) |
sl4 >
|
![Sigma[2], ParabolicSubalgebra(Sigma[2], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math300.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0})], [E11, E22, E33, E12, E13, E14, E23, E24, E32, E34, E42, E43]](/support/helpjp/helpview.aspx?si=6602/file05822/math303.png)
| (2.8) |
sl4 >
|
![Sigma[3], ParabolicSubalgebra(Sigma[3], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math307.png)
|
![[Vector(3, {(1) = 0, (2) = 1, (3) = -1})], [E11, E22, E33, E12, E13, E14, E21, E23, E24, E34, E43]](/support/helpjp/helpview.aspx?si=6602/file05822/math310.png)
| (2.9) |
sl4 >
|
![Sigma[4], ParabolicSubalgebra(Sigma[4], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math314.png)
|
![[Vector(3, {(1) = 1, (2) = 1, (3) = 2})], [E11, E22, E33, E12, E13, E14, E21, E23, E24, E31, E32, E34]](/support/helpjp/helpview.aspx?si=6602/file05822/math317.png)
| (2.10) |
sl4 >
|
![Sigma[5], ParabolicSubalgebra(Sigma[5], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math321.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1})], [E11, E22, E33, E12, E13, E14, E23, E24, E34, E43]](/support/helpjp/helpview.aspx?si=6602/file05822/math324.png)
| (2.11) |
sl4 >
|
![Sigma[6], ParabolicSubalgebra(Sigma[6], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math328.png)
|
![[Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 1, (2) = 1, (3) = 2})], [E11, E22, E33, E12, E13, E14, E21, E23, E24, E34]](/support/helpjp/helpview.aspx?si=6602/file05822/math331.png)
| (2.12) |
sl4 >
|
![Sigma[7], ParabolicSubalgebra(Sigma[7], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math335.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 1, (2) = 1, (3) = 2})], [E11, E22, E33, E12, E13, E14, E23, E24, E32, E34]](/support/helpjp/helpview.aspx?si=6602/file05822/math338.png)
| (2.13) |
sl4 >
|
![Sigma[8], ParabolicSubalgebra(Sigma[8], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math342.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 1, (2) = 1, (3) = 2})], [E11, E22, E33, E12, E13, E14, E23, E24, E34]](/support/helpjp/helpview.aspx?si=6602/file05822/math345.png)
| (2.14) |
The Query command can be used to check that these subalgebras are parabolic subalgebra.
sl4 >
|
![PS7 := ParabolicSubalgebra(Sigma[7], P)](/support/helpjp/helpview.aspx?si=6602/file05822/math365.png)
|

| (2.15) |
sl4 >
|

|

| (2.16) |
With the command ParabolicSubalgebraRoots, we can find the simple roots used to create the parabolic algebra .
sl4 >
|

|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 1, (2) = 1, (3) = 2})]](/support/helpjp/helpview.aspx?si=6602/file05822/math397.png)
| (2.17) |
Example 2.
We calculate (real) parabolic subalgebras for We use the command SimpleLieAlgebraData to initialize the Lie algebra.
sl4 >
|
![LD2 := SimpleLieAlgebraData("so(5,3)", so53, labelformat = "gl", labels = [R, theta])](/support/helpjp/helpview.aspx?si=6602/file05822/math422.png)
|
sl4 >
|

|

| (2.18) |
We use the command SimpleLieAlgebraProperties to calculate the restricted root space decomposition and the restricted simple roots.
so53 >
|

|
so53 >
|
![RRSD := eval(P["RestrictedRootSpaceDecomposition"])](/support/helpjp/helpview.aspx?si=6602/file05822/math451.png)
|

| (2.19) |
sl4 >
|
![RSR := P["RestrictedSimpleRoots"]](/support/helpjp/helpview.aspx?si=6602/file05822/math459.png)
|
![RSR := [Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 0, (2) = 0, (3) = 1})]](/support/helpjp/helpview.aspx?si=6602/file05822/math462.png)
| (2.20) |
The possible subsets of restricted simple roots are:
so53 >
|
![Sigma := [RSR, RSR[1 .. 2], RSR[2 .. 3], [RSR[1], RSR[3]], RSR[1 .. 1], RSR[2 .. 2], RSR[3 .. 3], []]](/support/helpjp/helpview.aspx?si=6602/file05822/math477.png)
|

| (2.21) |
The parabolics subalgebras defined by these sets of restricted roots are:
so53 >
|
![Sigma[1], ParabolicSubalgebra(Sigma[1], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math493.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 0, (2) = 0, (3) = 1})], [R11, R12, R13, R22, R23, R33, R15, R16, R26, R17, R18, R27, R28, R37, R38, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math496.png)
| (2.22) |
so53 >
|
![Sigma[2], ParabolicSubalgebra(Sigma[2], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math500.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = -1})], [R11, R12, R13, R22, R23, R33, R15, R16, R26, R17, R18, R27, R28, R37, R38, R67, R68, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math503.png)
| (2.23) |
so53 >
|
![Sigma[3], ParabolicSubalgebra(Sigma[3], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math507.png)
|
![[Vector(3, {(1) = 0, (2) = 1, (3) = -1}), Vector(3, {(1) = 0, (2) = 0, (3) = 1})], [R11, R12, R13, R21, R22, R23, R33, R15, R16, R26, R17, R18, R27, R28, R37, R38, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math510.png)
| (2.24) |
so53 >
|
![Sigma[4], ParabolicSubalgebra(Sigma[4], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math514.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0}), Vector(3, {(1) = 0, (2) = 0, (3) = 1})], [R11, R12, R13, R22, R23, R32, R33, R15, R16, R26, R17, R18, R27, R28, R37, R38, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math517.png)
| (2.25) |
so53 >
|
![Sigma[5], ParabolicSubalgebra(Sigma[5], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math521.png)
|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0})], [R11, R12, R13, R22, R23, R32, R33, R15, R16, R26, R53, R17, R18, R27, R28, R37, R38, R57, R58, R67, R68, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math524.png)
| (2.26) |
so53 >
|
![Sigma[6], ParabolicSubalgebra(Sigma[6], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math528.png)
|
![[Vector(3, {(1) = 0, (2) = 1, (3) = -1})], [R11, R12, R13, R21, R22, R23, R33, R15, R16, R26, R17, R18, R27, R28, R37, R38, R67, R68, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math531.png)
| (2.27) |
so53 >
|
![Sigma[7], ParabolicSubalgebra(Sigma[7], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math535.png)
|
![[Vector(3, {(1) = 0, (2) = 0, (3) = 1})], [R11, R12, R13, R21, R22, R23, R31, R32, R33, R15, R16, R26, R17, R18, R27, R28, R37, R38, R78]](/support/helpjp/helpview.aspx?si=6602/file05822/math538.png)
| (2.28) |
so53 >
|
![Sigma[8], ParabolicSubalgebra(Sigma[8], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math542.png)
|

| (2.29) |

Check that the subalgebra defined by (2.26) is parabolic.
so53 >
|
![PS5 := ParabolicSubalgebra(Sigma[5], P, method = "non-compact")](/support/helpjp/helpview.aspx?si=6602/file05822/math562.png)
|

| (2.30) |
so53 >
|

|

| (2.31) |
Find the restricted roots used to define .
so53 >
|

|
![[Vector(3, {(1) = 1, (2) = -1, (3) = 0})]](/support/helpjp/helpview.aspx?si=6602/file05822/math592.png)
| (2.32) |
|
See Also
|
|
DifferentialGeometry,
CartanSubalgebra, Killing
, LieAlgebras, PositiveRoots, SimpleRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition, Signature, SimpleLieAlgebraData, SimpleLieAlgebraProperties
|

|
|