Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[DifferentialEquationData] - create a data structure for a system of differential equations
Calling Sequences
DifferentialEquationData(EqList, VarList)
Parameters
EqList - a list of functions on a jet space defining a system of differential equations
VarList - a list of jet space coordinates such that the equations in EqList may be solved algebraically for these coordinates
Description
In the jet bundle approach to the geometric theory of differential equations, a system of k-th order differential equations is represented by a sub-manifold R^k of a jet space J^k(E), where E -> M is a fiber bundle. A solution to the differential equation defined by the sub-manifold R^k is a section s: M -> E whose jets j^k(s) take values in R^k.
The DifferentialEquationData command creates an internal data structure which allows for the subsequent manipulation of the system of differential equations. The differential equations can be formally prolonged to higher order jet spaces using the Prolong command. The imbedding phi: R^k -> J^k(E) can be constructed using the Transformation command.
The command DifferentialEquationData is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form DifferentialEquationData(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-DifferentialEquationData(...).
Examples
Example 1.
Create a space of 2 independent variables and 1 dependent variable.
Define the differential equation data structure for the Sine-Gordon equation u_{xy} = sin(u).
Let's prolong the equation once. We get 3 equations which can be solved for u[1, 1], u[1, 2], u[2, 1].
Now we can turn DE1 into a transformation.
Show that the function f vanishes on solutions to the Sine-Gordon equation.
See Also
DifferentialGeometry, JetCalculus, Prolong, Pullback, Transformation
Download Help Document