Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[FrameData] - calculate the structure equations for a generic (anholonomic) frame
Calling Sequence
FrameData(Fr, FrName)
Parameters
Fr
-
a list of vector fields or differential 1-forms on a manifold M
FrName
an unassigned Maple name or string, the name to that will be assigned to the frame with the command DGsetup
Description
There are many situations in differential geometry where computations are tremendously simplified by using a frame or co-frame other than the standard coordinate frame or co-frame. We refer to a general (local) frame or co-frame on a manifold as an anholomonic frame. Important examples of anholomonic frames are: the orthogonal frames constructed from a metric on a manifold; the null frames used in general relativity; the left (or right) invariant vector fields on a Lie group; the moving frames adapted to a free group action on a manifold. Cartan's method of equivalence provides an algorithmic approach to constructing adapted co-frames for Pfaffian systems.
All of the commands in the DifferentialGeometry package and the Tensor subpackage work with general anholonomic frames. At present, the commands in the JetCalculus package work only with the standard coordinate frame.
The structure equations of a frame Fr = [X_1, X_2, ...] (the X_i are vector fields) are the Lie bracket relations
[X_i, X_j] = F_{ij}^k X_k (sum on k).
The structure equations for a co-frame Omega = [omega^1, omega^2, ...] (the omega^k are differential 1-forms) are the exterior derivative formulas
d(omega^k) = G_{ij}^k omega ^i &w omega ^j.
If the co-frame Omega is the dual co-frame to the frame Fr, then the structure functions are related by G_{ij}^k = -1/2*F_{ij}^k).
To work in DifferentialGeometry with anholomonic frames on a manifold M, first define an underlying coordinate system on M and define the anholomonic frame or co-frame relative to this coordinate system. Use the command FrameData to generate the structure equations for this frame (along with other data). Pass the results of the FrameData procedure to the DGsetup procedure.
This command is part of the DifferentialGeometry package, and so can be used in the form FrameData(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-FrameData.
Examples
Example 1.
Calculate the structure equations for the frame Fr. Create a manifold N with local coordinate (x, y) and Fr as the frame for the tangent bundle.
Calculate the exterior derivative of the function x*y in terms of the co-frame dual to Fr.
Example 2.
Find an orthonormal co-frame for the metric g. Use this co-frame to compute the curvature tensor and its first covariant derivative.
Example 3.
In this example we shall encode the Liouville equation u_xy = exp(u) as a exterior differential system on a 7 manifold N with a co-frame adapted to the hyperbolic structure of the equation. The steps are:
1. Create a manifold M with coordinates (x, y, u, p, q, r, t) -- here we are using the classical notation for derivatives p = u_x, q = u_y, r = u_xx, t = u_yy.
2. Define a co-frame Omega on M by Omega = [du - p*dx - q*dy, dp - r*dx - exp(u)*dy, dq - exp(u)*dx - t*dy, dx, dr - p*dp, dy, dt - q*dq].
3. Compute the structure equations for the co-frame Omega using the FrameData command.
4. Initialize the manifold N with the co-frame Omega. Label the first 3 elements of the co-frame on N as theta1, theta2, theta3, and the last 4 elements as pi1, pi2, pi3, pi4.
5. Compute the exterior derivatives of theta1, theta2, theta3.
See Also
DifferentialGeometry, Tensor, CovariantDerivative, CurvatureTensor, DGsetup, DualBasis
Download Help Document