Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[particularsol] - find a particular solution to a nonlinear ODE, or a linear non-homogeneous ODE, without computing its general solution
Calling Sequence
particularsol(ODE, y(x))
particularsol(ODE_coeff_list, x)
Parameters
ODE
-
non-linear, or linear non-homogeneous ODE
y(x)
dependent variable (required only when not obvious); can be any unknown function of one variable
ODE_coeff_list
list of coefficients representing a non-homogeneous linear ODE (see DEtools[convertAlg])
x
independent variable
Description
The particularsol routine is used to find a particular solution for a nonlinear ordinary differential equation (ODE), or for a non-homogeneous linear ODE without computing the general solution to its homogeneous part.
For nonlinear ODEs, the approach used is to compute symmetries and from there compute invariant (particular) solutions.
For linear ODEs, particularsol tries, in sequence, to compute particular solutions of rational (see DEtools[ratsols]), exponential and d'Alembertian form (see LinearOperators[dAlembertianSolver]). If no particular solution is found, particularsol returns NULL.
When the input is an ODE, the output of particularsol is as dsolve's output, that is, an equation with the unknown on the left-hand-side and the (particular) solution on the right-hand-side.
When the input is a list of the coefficients of and its derivatives representing a linear ODE, for instance obtained from the ODE using DEtools[convertAlg], the output is not an equation but an expression representing the particular solution - see the examples.
In the case of a linear ODE, while particularsol is useful to compute a particular solution when the general solution of the homogeneous part of the ODE is not known, a particular solution can always be computed if that general solution is known - for that purpose use DEtools[varparam].
This function is part of the DEtools package, and so it can be used in the form particularsol(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[particularsol](..).
Examples
A third order non-linear ODE
No general solution is known for ode. A particular solution for it, however, depending on one arbitrary constant, is computable via
A second order non-homogeneous linear ODE whose homogeneous part is out of the scope of dsolve and a particular rational solution for it
Represent this non-homogeneous linear ODE using a list with the coefficients of y(x) and its derivatives
Note particularsol is not restricted to the computation of rational particular solutions
See Also
DEtools, DEtools[convertAlg], DEtools[varparam], dsolve, odetest
Download Help Document