Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[hypergeomsols] - solutions of a hypergeometric type second order linear ODE
Calling Sequence
hypergeomsols(LODE)
hypergeomsols(LODE,y(x))
hypergeomsols(coeff_list,x)
Parameters
LODE
-
homogeneous linear differential equation of second order
y(x)
any indeterminate function of one variable; required only when the ODE involves more than one function being differentiated
coeff_list
list of coefficients of the linear ODE
x
independent variable of the linear ODE
Description
The hypergeomsols routine returns a basis of the space of solutions of a second order linear ODE of hypergeometric type--that is, an equation of the form (see hyperode)
DEtools[hyperode](hypergeom([a,b], [c], x), y(x)) = 0;
For making symbolic experiments with the hypergeom function and the differential equation it satisfies see also dpolyform.
There are two general forms of calling sequences available for hypergeomsols.
The first argument LODE of the first calling sequence is a linear differential equation in diff or form. The second argument y(x) is the function in the differential equation, and it is required only when the ODE involves more than one function being differentiated.
The last calling sequence has as its first argument the list of coefficients of a linear ODE, and the second argument is the independent variable. This input sequence may be convenient for programming with the hypergeomsols routine.
This routine is part of the DEtools package, and so it can be used in the form hypergeomsols(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[hypergeomsols](..).
Examples
Kamke's example 2.108:
A solution to this ODE is built by using this solution basis and tested as follows.
Kamke's example 2.114:
Kamke's example 2.116:
See Also
DEtools, dpolyform, dsolve, hyperode
Download Help Document