Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[ReduceHyperexp] - a reduction algorithm for hyperexponential functions
Calling Sequence
ReduceHyperexp(H, x, newH)
Parameters
H
-
hyperexponential function of x
H1
H2
x
variable
newH
(optional) name; assigned a computed equivalence of H
Description
For a specified hyperexponential function H of x, the (H1, H2) := ReduceHyperexp(H, x, newH) calling sequence constructs two hyperexponential functions H1 and H2 such that and the certificate has a differential rational normal form with v of minimal degree.
The output from ReduceHyperexp is a sequence of two elements each of which is either or written in the form
(The form shown above is called a multiplicative decomposition of the hyperexponential function .)
ReduceHyperexp is a generalization of the reduction algorithm for rational functions by Hermite (recall that a rational function is also a hyperexponential function). It also covers the differential Gosper's algorithm.
Examples
See Also
DEtools[AreSimilar], DEtools[Gosper], DEtools[IsHyperexponential], DEtools[MultiplicativeDecomposition], SumTools[Hypergeometric][SumDecomposition]
References
Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational canonical forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press. (2004): 183-190.
Download Help Document