Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
ChebyshevU - Chebyshev function of the second kind
Calling Sequence
ChebyshevU(n, x)
Parameters
n
-
algebraic expression (the degree)
x
algebraic expression
Description
If the first parameter is a non-negative integer, then the ChebyshevU(n, x) function computes the nth Chebyshev polynomial of the second kind evaluated at x.
These polynomials are orthogonal on the interval with respect to the weight function . They satisfy:
Chebyshev polynomials of the second kind satisfy the following recurrence relation:
where ChebyshevU(0,x) = 1 and ChebyshevU(1,x) = 2*x.
This definition is analytically extended for arbitrary values of the first argument by
Examples
See Also
ChebyshevT, GegenbauerC, HermiteH, JacobiP, LaguerreL, LegendreP, orthopoly[U]
Download Help Document