Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Parse Redundant Brackets in Superscripts as Derivatives
The following explains the use of the Parse redundant brackets in superscripts as derivatives option in the Typesetting Rule Assistant dialog.
Background
If you want to represent f*f*f*f*f, you might enter f^5. In standard notation in calculus, derivatives are denoted by primes, such as f', f''.
At a certain order of derivative, entering and counting the number of primes becomes cumbersome. For example, what is f''''''''''?
Bracketed number notation is used to describe a derivative, so the above is written as f^(10), where the brackets are redundant. These redundant brackets are the key between detecting this notation as opposed to just f times itself 10 times, which is f^10.
For example:
f^5 -> f*f*f*f*f
f^(5) -> diff(f(x),x,x,x,x,x)
The ability to turn off this notation is necessary in the following example cases.
f^(#)
f^(n)
(expr)^(#)
(expr)^(n)
Where in the above '#' is a positive number, and 'n' is any single variable.
Note: The following cases do not apply for the reasons indicated.
f^(a+b) -> Brackets are redundant, are needed, and always a power.
(f+x)^(a+b) -> Brackets are redundant, are needed, and always a power.
f^(n)(x) -> Functions are not included, and have different rules.
sin^(n)(x) -> Same as above, includes known functions.
Using the Option in the Typesetting Rule Assistant
For the cases in which the rule does apply:
The query setting is the default setting, and displays a query dialog.
The always setting interprets the redundant brackets always as derivatives.
The never setting interprets as a power.
See Also
Typesetting Rule Assistant
Download Help Document